
An Empirical Examination of
the Relationship Between Code

Smells and Merge Conflicts
Iftekhar Ahmed, Caius Brindescu, Umme Ayda Mannan,

Carlos Jensen, Anita Sarma

1

Software development is a
non-trivial activity

It is a mix of social and technical factors.

Oftentimes, things go wrong, and the observable
impacts are bugs, merge conflicts etc.

While some factors have been studied in isolation, we
want to look at them together, and study their
interaction.

2

Merge conflicts

3

Merge conflicts

3

Merge conflicts

3

Merge Conflicts
Conflicts are a challenge to collaborative
development.

A developer has to interrupt their work, and focus on
solving it before they can move on.

It is an immediate concern for the developer.

They are a common occurrence. In our corpus we
find that over 19% of merges result in a conflict.

4

Code Smells

5

Code Smells

Code smells are symptoms of poor design or
implementation choices.

Code smells are associated with future
maintainability problems.

6

What Are We Missing?

By bringing these 2 factors together, we can study
their interplay, in a more holistic way.

Do problems like code smells or merge conflicts
compound each other?

How do they manifest themselves in the end product?

7

Our contribution

RQ1: Do program elements that are involved in
merge conflicts contain more code smells?

RQ2: Which code smells are more associated with
merge conflicts?

RQ3: Do code smells associated with merge conflicts
affect the quality of the resulting code?

8

Corpus

143 Java projects

556,911 commits.

36,111 merges

6,979 (19.32%) merges resulted in a conflict.

9

RQ1: Do program elements that
are involved in merge conflicts

contain more code smells?

10

Code smells

We used the inFusion code smell detector.

It detected 22 types of code smells in our corpus.

We used inFusion to identify code smells for each
merge conflict.

11

Code smells and merge
conflicts

Are program elements that have more code smells
more likely to be involved in merge conflicts?

Program elements involved in a merge conflict have
an average of 6.54 smells, while those that don't have
an average of 1.92.

12

Code smells and merge
conflicts

Are program elements that have more code smells
more likely to be involved in merge conflicts?

Program elements involved in a merge conflict have
an average of 6.54 smells, while those that don't have
an average of 1.92.

12

Elements involved in a conflict contain 3x more
code smells than element not involved in a

conflict.

RQ2: Which code smells
are more associated with

merge conflicts?

13

Identifying Merge Conflicts
We look back in history and identify all the merge
conflicts.

We split the conflicts into 2 categories:

Semantic: solving the conflict requires
understanding and changing the logic;

Non-Semantic: e.g. formatting, adding a method a
the end of a line.

14

Identifying Merge Conflicts

Figuring out the classification requires a human
touch.

We manually classified 606 conflicts, and then trained
a machine learning classifier.

We used 24 features collected for each conflict.

The classifier achieves a precision of 75%

15

Identifying Merge Conflicts

16

of conflicts % of total
(classified)

Semantic 5,250 75.23%

Non-semantic 1,729 24.77%

Identifying Merge Conflicts

16

of conflicts % of total
(classified)

Semantic 5,250 75.23%

Non-semantic 1,729 24.77%

Most conflicts have an underlying semantic
cause.

17

Are all code smells equally
problematic?

Smell Correlation with # of conflicts

God Class 0.18

Internal Duplication 0.17

Distorted Hierarchy 0.13

17

Are all code smells equally
problematic?

Smell Correlation with # of conflicts

God Class 0.18

Internal Duplication 0.17

Distorted Hierarchy 0.13

These 3 smells are indicative of bad code structure,
at a class level.

What about semantic
conflicts?

18

Smell Correlation with # of
Semantic Conflicts Odds ratio

Internal Duplication 0.07 1.55

Blob Operation 0.05 1.77

What about semantic
conflicts?

18

Smell Correlation with # of
Semantic Conflicts Odds ratio

Internal Duplication 0.07 1.55

Blob Operation 0.05 1.77

Methods with code smells are more likely to be
involved in Semantic merge conflicts

What does this mean?

Code smells are a symptom of bad design.

Merge conflicts are associated with code smells.

19

What does this mean?

Code smells are a symptom of bad design.

Merge conflicts are associated with code smells.

19

Code smells have an impact on the near future!

RQ3: Do code smells associated
with merge conflicts affect the
quality of the resulting code?

20

Author classification
Not all authors have the same experience level, we categorize
authors as core and non-core.

Author classification
Not all authors have the same experience level, we categorize
authors as core and non-core.

Author classification
Not all authors have the same experience level, we categorize
authors as core and non-core.

3 months

Author classification
Not all authors have the same experience level, we categorize
authors as core and non-core.

3 months

Author classification
Not all authors have the same experience level, we categorize
authors as core and non-core.

3 months

Top 20% contributors
in a 3 month range

Author classification
Not all authors have the same experience level, we categorize
authors as core and non-core.

3 months

Top 20% contributors
in a 3 month range

Identifying buggy lines

22

Conflicting lines

How do we determine if a merge conflict is
associated with a future bug?

Identifying buggy lines

22

Conflicting lines Commits that
do not touch the

line

How do we determine if a merge conflict is
associated with a future bug?

Identifying buggy lines

22

Conflicting lines Commits that
do not touch the

line

First commit
that touches the

line

How do we determine if a merge conflict is
associated with a future bug?

Identifying buggy lines

22

Conflicting lines Commits that
do not touch the

line

First commit
that touches the

line

How do we determine if a merge conflict is
associated with a future bug?

Identifying buggy lines

Whether the future commit is a bug fix was
determined using a "bag-of-words" classification
approach.

We trained a Naive-Bayes classifier with 1.500
manually classified commits.

We obtained a precision of 0.75 and a recall of 0.86.

23

We analyzed lines that were involved in a merge
conflict.

We used factors that have been showed to affect the
bug proneness, and added the # of code smells and
author type.

24

What about the impact on
bugs?

25

Factor Estimate

In Deps 3.195

Out Deps -0.053

Noncore author -3.799

No. Authors 0.129

No. Classes -0.373

No. Methods 0.244

AST diff 0.001

LOC diff 0.00002571

No. of Smells 0.427

25

Factor Estimate

In Deps 3.195

Out Deps -0.053

Noncore author -3.799

No. Authors 0.129

No. Classes -0.373

No. Methods 0.244

AST diff 0.001

LOC diff 0.00002571

No. of Smells 0.427

What does this mean?

The number of code smells is an indicator for
bugginess, if the line is involved in a conflict.

26

The interaction between code smells and merge
conflict has an effect on the final product!

Limitations

The precision of the classifiers;

Looking at code smells and bugs in isolation;

The 3 month period for identifying core contributors.

27

Conclusions
Over 75% of all conflicts are semantic in nature.

Methods that exhibit code smells are over 50% more
likely to be involved in a semantic merge conflict.

When looking at lines involved in a conflict, code
smells are an accurate predictor of bugginess.

28

This work was funded by NSF through grants IIS-1559657, and
CCF-1560526, and by an IBM fellowship.

