
How Do Developers Resolve Merge Conflicts? An Investigation
Into the Processes, Tools, and Improvements

Caius Brindescu
Oregon State University

Corvallis, OR
brindesc@oregonstate.edu

ABSTRACT
Most software development is done in teams. When more than
one developer is modifying the source code, there is a change that
their changes will conflict. When this happens, developers have
to interrupt their workflow in order to resolve the merge conflict.
This interruption can lead to frustration and lost productivity. This
makes collaboration, and the problems associated with it, an im-
portant aspect of software development. Merge conflicts are some
of the more difficult issues that arise when working in a team.

We plan to bring in more information about the strategies de-
velopers use when resolving merge conflicts. We will gather infor-
mation through in-situ observations and interviews of developers
resolving conflicts when working on real development tasks, com-
bined with analytical methods. The information obtained can then
be used to improve the existing tools and make it easier for devel-
opers when working in a collaborative environment.

This work is advised by Prof. Dr. Carlos Jensen and Prof. Dr.
Anita Sarma.

CCS CONCEPTS
• Software and its engineering → Software version control;
Programming teams;

KEYWORDS
Merge Conflicts, Version Control Systems, Information Foraging
Theory, Developer Processes

ACM Reference Format:
Caius Brindescu. 2018. How Do Developers Resolve Merge Conflicts? An
Investigation Into the Processes, Tools, and Improvements. In Proceedings of
the 26th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’18), November
4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3236024.3275430

1 RESEARCH PROBLEM
All of today’s software is developed in teams. For example, in 2017
over 4000 individuals submitted and had changes accepted in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11.
https://doi.org/10.1145/3236024.3275430

Linux Kernel. Over 83,000 changesets have been merged in the ker-
nel over the same period [9]. This scale of development exacerbates
the problems that merge conflicts pose. The larger the development
team, the more likely it is that merge conflicts will occur.

Previous work has looked at how to detect merge conflicts early.
This would allow developers to approach them before they became
too complex, or difficult to solve. It has also investigated ways
to increase developer awareness within a team. This would help
developers coordinate, and, avoid conflicts if possible. However,
the core problem, the resolution, still remains unaddressed. Once
a conflict occurs, a developer has to resolve it, if they want to
integrate their work into the final product. The resolution becomes
even more critical if the changes important updates, such as bug-
fixes or security updates.

Currently, we have little to no understanding of the how de-
velopers approach a merge conflict. How often do merge conflicts
occur? What are their strategies for solving them? What is the
information that they need? Do the toolsets available provide the
information and support developers need to successfully resolve
the merge conflicts? We cannot improve existing tools without a
deeper understanding of the resolution process.

Answering these questions will help tool builders provide devel-
opers with better support for merge conflict resolution. It will also
bring awareness of the current difficulties developers face. This
awareness will benefit the entire research community and open new
avenues of research into the difficulties faced during collaborative
development.

2 RELATEDWORK
2.1 Workspace Awareness
Biehl et al. [4] propose FastDASH and da Silva et al. [10] propose
Lighthouse, providing a dashboard that shows the files that are
checked out, modified, and staged by other members of the team.

Sarma et al. [23, 24] go a step further and propose Palantír. Palan-
tír monitors other developer’s workspaces, and, depending on the
changes, will notify the developer, in a non-obtrusive manner, if
a conflict has happened. Similarly, Hatori and Lanza [14] propose
Syde that monitors the changes at an Abstract Syntax Tree (AST)
level.

Brun et al. [8] propose Crystal, which monitors selected branches
in the repository. Crystal preemptively merges the branches in the
background and will notify the developers of any conflicts that
arise.

Kasi and Sarma [16] take a more proactive approach and propose
a novel task scheduling approach that aims to minimize the number

https://doi.org/10.1145/3236024.3275430
https://doi.org/10.1145/3236024.3275430


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Caius Brindescu

of conflicts. However, with all these approaches, once a conflict has
occurred, it is up to the developer to resolve it.

2.2 Merging tools
Currently, all version control systems treat source code files as text.
Therefore, merging is done at a textual level, ignoring all structure
that the files might contain. Several researchers have looked at
ways to improve this status quo.

Westfechtel [27] proposes a merging technique that uses the
structural (i.e. lexical) information of a language when performing
a merge. However, such tools are language dependent and the re-
quired algorithms are computationally expensive. Apel et al. [2]
propose JDime, which improves existing structured merging tech-
niques by only using structural information when the unstructured
(i.e. text only) merge has failed. Binkley et al. [5] propose using
call graph information to correctly merge different versions of the
program. Lippe and van Oosterom [17] go a different way and pro-
pose a new merging technique, operation-based merging that would
replay the changes that were performed on the two branches, in
the order in which they were performed. Dig et al. [11] uses this
technique and shows empirically that many more merge conflicts
could be solved by a tool that understood the semantics of change
operations.

The previous work has focused on various way to improve the
resolution process, and the tool support for it. However, we cur-
rently don’t have an understanding of why merge conflict are diffi-
cult. My work aims to bridge the gap between our understanding
of merge conflicts and the tool support for them.

2.3 Empirical Studies
Guzzi et al. [13] conducted an exploratory investigation and tool
evaluation for supporting collaboration in teamworkwithin the IDE.
The found that, while automatic merge tools were used, developers
did not trust them, and manually checked the end result.

Finally, McKee et al. [18] present an empirical study where they
investigate developers’ perceptions regarding merge conflicts. They
find that developers initial perception of a merge conflict has a
significant impact on the tools and processes they use for resolving
it. They also find that developers use relatively simple metrics
(lines of code in conflict, the complexity of the conflicting code)
and their own expertise in the area of the conflict code to judge the
conflicts difficulty. While this work focuses on the perceptions of
developers when they encounter merge conflict, it does not tackle
the resolution of a merge conflict.

2.4 Information Foraging Theory
Ragavan et al. [22] propose a variant of Information Foraging The-
ory (IFT), that models how developers forage in the presence of
software history, or “variations,” as they define it. This model high-
lights the needs of developers attempting to understand variations
in code, whereas I examine how developers resolve a conflict. More
specifically, I examine how developers approach the conflict, the
tools they use to solve and the information they need to successfully
resolve it.

Flemming et al. [12] use Information Foraging Theory to identify
design patterns that successful tools use. Their study investigates

only refactoring, debugging and software reuse tools. We will look
at how to apply these design patterns to improve tools used for
resolving merge conflicts.

2.5 Program Comprehension
Borg et al. [6], through interviews, look at how tools supportChange
Impact Analysis. Wang et al. [26] propose a technique that uses ver-
sion history and previous bug reports to help developers localize
bugs. Panichella et al. [21] explores how collaboration affects the
structure of the source code. Tao et al. [25] investigate how devel-
opers understand software changes, in an industrial setting.

While existing work looks at understanding changes to source
code, or working with history, no research has been done to in-
vestigate the comprehension of the changes that are involved in a
merge conflict.

3 PROPOSED APPROACH
In my previous work I have shown that program elements involved
in amerge conflict are more likely to be buggy [1]. I have also shown
that changing the tools does influence the developers’ behavior,
as developer have different committing habits, depending if they
use SVN or Git [7]. Therefore, by understanding the developers
needs, and using this understanding to improve the current tool sets
developers use, we can aim to improve the quality of the underlying
code. I plan to do this in two steps: first understand what developers’
needs are when resolvingmerge conflicts and, second, by evaluating
the tools to see if they provide the right support developers need.
The next two subsections will present each of the two steps in
detail.

3.1 Understanding the Processes Developers
Use When Resolving Merge Conflicts

To get the most accurate data, the best option is to observe devel-
opers while they are resolving merge conflicts. This will provide us
with “ground truth” data, that can then be used to better understand
the developer’s needs, and if the tools currently at their disposal
satisfy those needs. We plan to collect this data by performing field
studies that will involve several professional software development
teams.

Direct observation also eliminates some of the threats that come
with interviews or surveys. For example, participants might present
us a “polished” version of events, or might not provide relevant in-
formation that they might consider to be unimportant [3]. Similarly,
bringing people in a laboratory for a controlled study will affect
the external validity of the findings. We are also at risk of losing
valuable information because we did now allow the developers to
use their own tools and techniques for solving merge conflicts, in
an environment they are familiar with.

3.2 Evaluating Existing Tool Support
Resolving merge conflicts requires the developer to use and find
information regarding the changes they are about tomerge. Inmany
cases, they are unaware of the incoming changes, as they have
written by another developer. Do the tools they use actually help
them find the relevant information they need? Is this information
presented in an understandable way?



How Do Developers Resolve Merge Conflicts? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

First, we will need to understand what information developers
use when resolving merge conflicts. Using the model derived from
the field study (Section 3.1), we will perform an Information Forag-
ing Theory (IFT) analysis to understand developers’ information
needs.

On the other hand, we need to understand the information the
tools provide, when it comes to resolving merge conflicts. Using
IFT, we can understand and quantify the information provided by
existing tools. We will use the methodology presented by Fleming
et al. [12].

These two approaches will allow us to identify gaps between
what the developers need and what the tools provide. I will then pro-
vide improvements using the IFT design patterns suggested by [12].

We plan to incorporate individual differences into our evaluation
(such as experience level, gender etc.), in order to help tool builders
build tools that will help individual developers as well as than the
“generic” developer. Such individual difference are not considered in
the merge conflict literature, but have been shown to be important
factors [15, 19, 20].

4 CONTRIBUTIONS
The high-level goal of my work is to understand the problems
merge conflicts pose for developers. Currently, we have no under-
standing of how developers resolve a merge conflict. What tools do
they use? What information do they need? How do they get that
information? Without knowing the answers to these questions, we
cannot improve upon the state of the art.

We will present a model of the process developers use when
resolving merge conflicts. This model can then be used to evaluate
the developer’s information needs, and the information provided
by existing toolsets.

Secondly, wewill examine the existing tools to see if they support
the current developer’s practices. We expect to see important gaps
between what developers need and what tools offer. Our hypothesis
is that those gaps increase the effort developers have to expend
in order to successfully resolve a merge conflict. Identifying those
gaps can then inform the development of better merge resolution
tools.

We will also provide a set of improvements, based on the IFT
analysis, of how those gaps can be closed, or at least reduced.

Our expectation is that some gaps will be relatively easy to fill
while closing other others might require significant reengineering
by tools builders. By building a model of the process developers’ use
when resolving a merge conflict, we can bring more understanding
of their needs. Our operationalization of this model, through the
evaluation of existing tools, will helpmakemerge conflict resolution
less painful, and, hopefully, less error-prone.

5 EVALUATION PLAN
During the field study, we will collect screen recordings of develop-
ers resolving merge conflicts, and perform retrospective interviews.
The data from the field study will be analyzed using qualitative
methods, such as open coding, to identify the processes developer
use when resolving a merge conflict. In order to validate the results,
we will triangulate our findings by collecting data from multiple
organizations. This will improve the generalizability of our results.

For evaluating the tool support we will use known analytical
techniques (such as IFT), we can evaluate the existing tools in terms
of their “fitness” for the processes developers employ. In order to
suggest improvements to existing tools, we will use an approach
similar to Flemming et al. [12]. These improvements will take the
form of IFT “design patterns,” which, like software engineering
design patterns, are common solutions to frequent information
needs. By using the model as our starting point, and evaluating the
tools through the lens of this model, the improvements will aim
at directly reducing some of the pain points developers encounter
while resolving a merge conflict.

Finally, to validate our findings, both in terms of the merge reso-
lution patterns, as well as our tool evaluation, we will conduct a
survey. This will give us a wide sample to evaluate the generaliz-
ability of our findings.

6 ACKNOWLEDGMENTS
The author is advised by Prof. Dr. Carlos Jensen and Prof. Dr. Anita
Sarma. All of them are members of the Software Engineering, Hu-
man Computer Interaction and Programming Languages group at
Oregon State University.

REFERENCES
[1] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma. 2017. An

Empirical Examination of the Relationship between Code Smells and Merge
Conflicts. In 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 58–67. https://doi.org/10.1109/ESEM.2017.
12 ISSN:.

[2] Sven Apel, Olaf Lessenich, and Christian Lengauer. 2012. Structured Merge
with Auto-Tuning: Balancing Precision and Performance. In Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering (ASE
2012). ACM, Essen, Germany, 120–129. https://doi.org/10.1145/2351676.2351694

[3] Howard S Becker and Blanche Geer. 1957. Participant observation and interview-
ing: A comparison. Human organization 16, 3 (1957), 28–32.

[4] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. 2007.
FASTDash: A Visual Dashboard for Fostering Awareness in Software Teams. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’07). ACM, New York, NY, USA, 1313–1322. https://doi.org/10.1145/1240624.
1240823

[5] David Binkley, Susan Horwitz, and Thomas Reps. 1995. Program Integration
for Languages with Procedure Calls. ACM Trans. Softw. Eng. Methodol. 4, 1 (Jan.
1995), 3–35. https://doi.org/10.1145/201055.201056

[6] Markus Borg, Emil Alégroth, and Per Runeson. 2017. Software engineers’ in-
formation seeking behavior in change impact analysis: an interview study. In
Proceedings of the 25th International Conference on Program Comprehension, ICPC
2017, Buenos Aires, Argentina, May 22-23, 2017. 12–22. https://doi.org/10.1109/
ICPC.2017.20

[7] Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig. 2014.
How Do Centralized and Distributed Version Control Systems Impact Software
Changes?. In Proceedings of the 36th International Conference on Software Engi-
neering (ICSE 2014). ACM, Hyderabad, India, 322–333. https://doi.org/10.1145/
2568225.2568322

[8] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2013. Early
Detection of Collaboration Conflicts and Risks. IEEE Transactions on Software
Engineering 39, 10 (2013), 1358–1375. https://doi.org/10.1109/TSE.2013.28

[9] Jonathan Corbet and Greg Kroah-Hartman. 2017. 2017 Linux Kernel Development
Report. Technical Report. The Linux Foundation.

[10] Isabella A. da Silva, Ping H. Chen, Christopher Van der Westhuizen, Roger M.
Ripley, and André van der Hoek. 2006. Lighthouse: Coordination Through
Emerging Design. In Proceedings of the 2006 OOPSLA Workshop on Eclipse
Technology eXchange (eclipse ’06). ACM, New York, NY, USA, 11–15. https:
//doi.org/10.1145/1188835.1188838

[11] Danny Dig, Kashif Manzoor, Ralph E. Johnson, and Tien N. Nguyen. 2008. Ef-
fective Software Merging in the Presence of Object-Oriented Refactorings. IEEE
Trans. Softw. Eng. 34, 3 (May 2008), 321–335.

[12] Scott D. Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. [n. d.]. An Information Foraging
Theory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks. 22, 2
([n. d.]), 1–41. https://doi.org/10.1145/2430545.2430551

https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1145/201055.201056
https://doi.org/10.1109/ICPC.2017.20
https://doi.org/10.1109/ICPC.2017.20
https://doi.org/10.1145/2568225.2568322
https://doi.org/10.1145/2568225.2568322
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1145/1188835.1188838
https://doi.org/10.1145/1188835.1188838
https://doi.org/10.1145/2430545.2430551


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Caius Brindescu

[13] Anja Guzzi, Alberto Bacchelli, Yann Riche, and Arie van Deursen. 2015. Sup-
porting Developers’ Coordination in the IDE. ACM Press, 518–532. https:
//doi.org/10.1145/2675133.2675177

[14] Lile Hattori and Michele Lanza. 2010. Syde: A Tool for Collaborative Software
Development. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2 (ICSE ’10). ACM, Cape Town, South Africa,
235–238. https://doi.org/10.1145/1810295.1810339

[15] Charles G. Hill, Maren Haag, Alannah Oleson, Christopher J. Mendez, Nicola
Marsden, Anita Sarma, and Margaret M. Burnett. 2017. Gender-Inclusiveness
Personas vs. Stereotyping: Can We Have it Both Ways?. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, May
06-11, 2017. 6658–6671. https://doi.org/10.1145/3025453.3025609

[16] Bakhtiar Khan Kasi and Anita Sarma. 2013. Cassandra: Proactive Conflict Mini-
mization Through Optimized Task Scheduling. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ,
USA, 732–741.

[17] Ernst Lippe and Norbert van Oosterom. 1992. Operation-Based Merging. In
Proceedings of the Fifth ACM SIGSOFT Symposium on Software Development En-
vironments (SDE 5). ACM, New York, NY, USA, 78–87. https://doi.org/10.1145/
142868.143753

[18] Shane McKee, Nicholas Nelson, Anita Sarma, and Danny Dig. 2017. Software
Practitioner Perspectives on Merge Conflicts and Resolutions. In 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution, ICSME 2017, Shanghai,
China, September 17-22, 2017. 467–478. https://doi.org/10.1109/ICSME.2017.53

[19] C. Mendez, H. S. Padala, Z. Steine-Hanson, C. Hildebrand, A. Horvath, C. Hill, L.
Simpson, N. Patil, A. Sarma, and M. Burnett. 2018. Open Source Barriers to Entry,
Revisited: A Sociotechnical Perspective. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). 1004–1015.

[20] C. Mendez, A. Sarma, and M. Burnett. 2018. Gender in Open Source Software:
What the Tools Tell. In 2018 IEEE/ACM 1st International Workshop on Gender
Equality in Software Engineering (GE). 21–24.

[21] Sebastiano Panichella, Gerardo Canfora, Massimiliano Di Penta, and Rocco
Oliveto. 2014. How the Evolution of Emerging Collaborations Relates to Code
Changes: An Empirical Study. In Proceedings of the 22Nd International Conference
on Program Comprehension (ICPC 2014). ACM, New York, NY, USA, 177–188.
https://doi.org/10.1145/2597008.2597145

[22] Sruti Srinivasa Ragavan, Bhargav Pandya, David Piorkowski, Charles Hill,
Sandeep Kaur Kuttal, Anita Sarma, and Margaret Burnett. [n. d.]. PFIS-V: Mod-
eling Foraging Behavior in the Presence of Variants. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems (2017) (CHI ’17). ACM,
6232–6244. https://doi.org/10.1145/3025453.3025818

[23] Anita Sarma, Zahra Noroozi, and André Van Der Hoek. 2003. Palantir: Raising
Awareness among Configuration Management Workspaces. 444–454.

[24] Anita Sarma, David Redmiles, and André van der Hoek. 2008. Empirical Evidence
of the Benefits of Workspace Awareness in Software Configuration Management.
In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (SIGSOFT ’08/FSE-16). ACM, New York, NY, USA, 113–123.
https://doi.org/10.1145/1453101.1453118

[25] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.
How do software engineers understand code changes?: an exploratory study
in industry. In 20th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012. 51.
https://doi.org/10.1145/2393596.2393656

[26] ShaoweiWang and David Lo. 2014. Version History, Similar Report, and Structure:
Putting Them Together for Improved Bug Localization. In Proceedings of the 22Nd
International Conference on Program Comprehension (ICPC 2014). ACM, New York,
NY, USA, 53–63. https://doi.org/10.1145/2597008.2597148

[27] Bernhard Westfechtel. 1991. Structure-Oriented Merging of Revisions of Soft-
ware Documents. In Proceedings of the 3rd International Workshop on Soft-
ware Configuration Management (SCM ’91). ACM, New York, NY, USA, 68–79.
https://doi.org/10.1145/111062.111071

https://doi.org/10.1145/2675133.2675177
https://doi.org/10.1145/2675133.2675177
https://doi.org/10.1145/1810295.1810339
https://doi.org/10.1145/3025453.3025609
https://doi.org/10.1145/142868.143753
https://doi.org/10.1145/142868.143753
https://doi.org/10.1109/ICSME.2017.53
https://doi.org/10.1145/2597008.2597145
https://doi.org/10.1145/3025453.3025818
https://doi.org/10.1145/1453101.1453118
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/2597008.2597148
https://doi.org/10.1145/111062.111071

	Abstract
	1 Research Problem
	2 Related Work
	2.1 Workspace Awareness
	2.2 Merging tools
	2.3 Empirical Studies
	2.4 Information Foraging Theory
	2.5 Program Comprehension

	3 Proposed Approach
	3.1 Understanding the Processes Developers Use When Resolving Merge Conflicts
	3.2 Evaluating Existing Tool Support

	4 Contributions
	5 Evaluation Plan
	6 Acknowledgments
	References

