
*Both of the first two authors contributed equally

An Empirical Examination of the Relationship
Between Code Smells and Merge Conflicts

Iftekhar Ahmed*, Caius Brindescu*, Umme Ayda Mannan, Carlos Jensen, Anita Sarma
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR, USA

{ahmedi, brindesc, mannanu, carlos.jensen, anita.sarma }@oregonstate.edu

Abstract—Background: Merge conflicts are a common occur-
rence in software development. Researchers have shown the negative
impact of conflicts on the resulting code quality and the development
workflow. Thus far, no one has investigated the effect of bad design
(code smells) on merge conflicts. Aims: We posit that entities that ex-
hibit certain types of code smells are more likely to be involved in a
merge conflict. We also postulate that code elements that are both
“smelly” and involved in a merge conflict are associated with other
undesirable effects (more likely to be buggy). Method: We mined 143
repositories from GitHub and recreated 6,979 merge conflicts to obtain
metrics about code changes and conflicts. We categorized conflicts
into semantic or non-semantic, based on whether changes affected the
Abstract Syntax Tree. For each conflicting change, we calculate the
number of code smells and the number of future bug-fixes associated
with the affected lines of code. Results: We found that entities that are
smelly are three times more likely to be involved in merge conflicts.
Method-level code smells (Blob Operation and Internal Duplication)
are highly correlated with semantic conflicts. We also found that code
that is smelly and experiences merge conflicts is more likely to be
buggy. Conclusion: Bad code design not only impacts maintainability,
it also impacts the day to day operations of a project, such as merging
contributions, and negatively impacts the quality of the resulting code.
Our findings indicate that research is needed to identify better ways to
support merge conflict resolution to minimize its effect on code qual-
ity.

Keywords—Code Smell; Merge Conflict; Empirical Analysis;
Machine Learning

I. INTRODUCTION

Modern software systems are becoming more and more com-
plex and requires a large development team to develop and main-
tain. Modern Version Control Systems (VCS) have made paral-
lel development easier by streamlining and coordinating code
management, branching, and merging. This enables large teams
to work together efficiently. But it has been shown that this pro-
cess is sometimes halted when isolated private development
lines are synchronized and the developer runs into merge con-
flicts. Conflicts distract the developers as they have to interrupt
their workflow to resolve them. Developers have to reason about
the conflicting changes and find an acceptable merging solution.
This process of conflict resolution can itself introduce bugs.
Prior work has found that in complex merges, developers may
not have the expertise or knowledge to make the right decisions
[14, 53] which might degrade the quality of the merged code.
 Researchers have looked at many ways of preventing merge
conflicts, and make developer’s lives easier when they do occur.
Researchers have proposed workspace awareness tools [6, 19,

34, 58, 60] that help prevent merge conflicts by making the de-
velopers aware of each other’s changes. Also, new merge tech-
niques [3, 4, 40] have been proposed that would reduce the num-
ber of merge conflicts. However, little research has been devoted
to the causes of merge conflicts. Are there any endemic issues
that arise from the design itself? We are interested in knowing
whether the design of the codebase has an effect on the merge
conflicts and what is its impact on the overall quality.

Just like merge conflicts, bad design can inflict pain on de-
velopers. Bad design makes maintenance and future changes dif-
ficult and error prone. Code smells, an indication of bad design,
imply that the structure of the code is badly organized. This can
lead to developers stepping on each other’s toes as they make
their changes. This, in turn, can lead to merge conflicts.

If there are “fundamental flaws” in the design itself, as the
project grows, and the codebase grows in size and complexity,
understanding and working around these “rough spots” becomes
more challenging. Thus, the chances of creating a conflict in-
creases because of the need to generate workarounds. This
means that as projects grow, merge conflicts should be more
likely to occur, especially around the smelly parts of the code.
We aim to examine whether there is a correlation between the
two, to examine whether such a link is credible.

In order to evaluate the design we look at the code smells
[45]. We investigate if there is a connection between entities that
contain code smells, the code smells they contain, and the merge
conflicts that surround the smelly entities.

It is important to note that not all smells are created equal.
Some might be more associated with a merge conflict than oth-
ers. For example, a class is considered a God Class if it contains
an oversized part of the entire functionality of the final product.
Therefore, any changes have a high likelihood of involving
changes in the God Class. When multiple developers are work-
ing, they all have a high likelihood of touching the God class.
This can easily lead to merge conflicts down the road. If the
changes involved are not trivial then the task of merging them
will be not trivial as well.

In this paper, we investigate the following questions:
RQ1: Do program elements that are involved in merge con-

flicts contain more code smells?
RQ2: Which code smells are more associated with merge

conflicts?
RQ3: Do code smells associated with merge conflicts affect

the quality of the resulting code?
To answer these questions, we investigated 143 projects.

Across them, we had 36,122 merge commits, out of which 6,979
were conflicting. We identified 7,467 code smells instances

across our whole corpus. We found that merge conflicts in-
volved more “smelly” program elements than merges that did
not conflict. Our results also show that not all code smells are
created equal. Some are more likely to cause problems than oth-
ers. When we looked at the difficulty of merge conflicts, we
found that some of the smells are more likely to be involved in
semantic merge conflicts than others. Finally, we found that
code smells have a negative impact on code quality.

II. RELATED WORK

A. Code smells and their impact

Various measures of software quality have been proposed.
Boehm et al. [8], and Gorton et al. [31], to mention a few, have
explored measures including completeness, usability, testability,
maintainability, reliability, efficiency etc. Some of these metrics
are difficult to measure, especially in the absence of requirement
documents or other supporting information. Researchers have
also used code smells as a measurement of software quality [48,
49], though smells are often focused on future maintainability
issues. The concept of code smells was first introduced by
Fowler [29]. Code smells are symptoms of poor design and im-
plementation choices [29] in code base which eventually affect
the maintainability of a software system [44]. Studies also
showed that there is an association between code smells and
bugs [46, 54] and code maintainability problems [29]. Code
smells also leads to design debt. Zazworka et al. [67] found that
the God Class smell is related to technical debt. Ahmed et al. [1]
found how software gets worse over time in terms of design deg-
radation. They analyzed 220 open source projects in their study
and confirmed that ignoring the smells leads to “software de-
cay”.

Researchers have proposed many different approaches for
detecting code smell, such as metric based [21, 22, 45, 46, 48]
and meta-model based [52]. Researchers used different tech-
niques for identifying code smells. Fontana et al. [27] used ma-
chine learning techniques for detecting code smells. Researchers
also used both static analysis [21, 22, 46] and techniques that
rely on the evaluation of successive versions of a software sys-
tem [39, 45, 55].

B. Work related to code smells and bugs

Researchers have also considered the relationship between
the presence of code smells and bug appearance in the code base.
Khomh et al. [41] showed that classes affected by design prob-
lems (“code smells”) are more likely to contain bugs in the fu-
ture. Hall et al. [33] also found relationships between code
smells and fault-proneness. According to their study some code
smells indicate fault-proneness in the code base but the effect
size is small (under 10%). Zazworka et al. [67] found that God
Classes are fault-prone in some cases. Li et al. [48] also studied
the relationship between code smells and the probability of faults
in industrial systems, and found that the Shotgun Surgery smell
was correlated with a higher probability of faults. To the best of
our knowledge no work has tried to research on the relationship
between code smells and how it impacts collaborative work
flow, specifically merging individual works.

C. Merge conflicts

Several studies have been done on identification of conflicts
and developers’ awareness about potential conflicts. Awareness

is frequently defined as an understanding of the activities of oth-
ers to give a context for one’s activities [24], which is a very
important issue in Global Software Engineering (GSE) [57]. Re-
searchers have looked at different techniques of avoiding merge
conflicts by increasing the developer’s awareness of the changes
others made to the source code. Biehl et al. [6] proposed Fast-
Dash, which sends notifications about potential conflicts when
two or more developers are modifying the same file. Another
awareness tool called Syde by Hatori et al. [34] consider the
source code changes at Abstract Syntax Tree (AST) level oper-
ations to detect conflicts by comparing tree operations. Da Silva
et al. [19] introduced Lighthouse, which is another tool for in-
creasing awareness among developers about the conflict. Palan-
tír by Sarma et al. [58] detects the changes made by other devel-
opers and show them in a graphical, non-intrusive manner. Serv-
ant et al. [60] also presented a tool and visualization that can be
used to understand the impact of developers’ changes to prevent
indirect conflicts.

Guimaraes et al. [32] introduce WeCode which continuously
merges uncommitted and committed changes in the IDE to de-
tect merge conflicts as soon as possible. Brun et al. [9] used the
similar approach in Crystal, to detect both direct and indirect
conflicts. A software development model presented by Dewan
et al. [23] aims to reduce conflicts by notifying developers who
are working on the same file.

D. Work related to merge conflict resolution

Researchers have also studied different ways of managing
the merge of developers' changes to efficiently resolve conflicts.
This resolution could be either in an automated way or by pre-
serving and presenting a useful context for the developer trying
to resolve the conflict. A comprehensive survey of merge ap-
proaches was done by Mens [51]. Apel et al. [3, 4] presented a
merging technique called semistructured merge. This considers
the structure of the code which is being merged. Operation based
merging by Lippe et al. [47] considers all the changes performed
during development, in addition to the result, when merging.

Kasi and Sarma [40] present a technique of avoiding merge
conflicts by scheduling tasks in a way that the probability of a
conflict is minimized. SafeCommit by Wloka et al. [65] uses a
static analysis approach to identify changes in a commit with no
test failure. They proposed to use this approach when detecting
indirect conflicts.

E. Conflict categorization

Researchers have come up with different ways of categoriz-
ing conflicts. Sarma et al. [58] grouped conflicts into two cate-
gories. One is direct conflicts, where the changes conflict di-
rectly. The other is indirect conflicts, where the files don’t con-
flict directly, but integrating the changes cause build or test fail-
ures. Similarly, Brun et al. [9], categorized conflicts as first level
(textual) conflicts and second level (build and test failure) con-
flicts. Buckley et al. [10] proposed a taxonomy of changes based
on properties like time of change, change history, artifact gran-
ularity etc. Their taxonomy deals with software changes in gen-
eral or conflicts at a coarser level.

F. Tracking code changes and conflicts

Researchers have proposed various algorithms for tracking
individual lines of code across versions of software. Canfora et
al. [12] proposed an algorithm that uses Levenstein edit distance

to compute similarity of lines, matching “chunks” of changed
code. Zimmerman et al. [68] proposed annotation graphs which
works at the region level for tracking lines. Godfrey et al. [30]
described “origin analysis”, a technique for tracking entities
across multiple revisions of a code base by storing inexpensively
computed and easily comparable “fingerprints” of interesting
software entities in each revision of a file. These fingerprints can
then be used to identify areas of the code that are likely to match
before applying more expensive techniques to track code enti-
ties. Finally, Kim et al. [42] propose an algorithm, SZZ, for
tracking the origin of lines across changes.

III. METHODOLOGY

Our goal was to identify the effect of design issues on merge
conflicts and the quality of the resulting code (whether these
changes are associated with bug fixes or other improvements.)

Here we discuss the various steps of collecting data: (1) se-
lecting the sample of projects for the study, (2) identifying which
merge commits lead to merge conflicts, (3) tracking the lines of
code through different versions and merges to investigate how
the code evolved and which lines were associated with conflicts,
(4) identifying code smells at the time of the conflicting merge
commit. Next, we determine the nature of the code updates (e.g.
was the commit a result of a bug fix or a new feature etc.) taking
place on those lines. In order to do this, we manually classify a
subset of the commits as bug-fix related or other. We train a ma-
chine-learning classifier to classify the rest. Finally, we build a
model to predict the total number of bug fixes that would occur
on a conflicting line that also contained a code smell. The fol-
lowing subsections describe each of these steps in detail.

A. Project Selection Criteria

We wanted to make sure that our findings would be repre-
sentative of the code developed in real world, thus we selected
active, open source projects hosted in GitHub. We decided to use
Java as the language of focus. This decision was influenced by
2 factors: First, Java is one of the most popular languages (ac-
cording to the number of projects hosted on Github and the Ti-
obe index [62]). The second was the availability of code smell
detection tools for Java, as compared to other programming lan-
guages. Further, for ease of building and analyzing the code, we
select projects using the Maven [2] build system.

We started by randomly selecting 900 projects, the first to
show up when using the GitHub search mechanism. From these,
we eliminated aggregate projects (which could skew our results),
leaving 500 projects. After eliminating projects that did not com-
pile (for reasons such as unavailable dependencies, or compila-
tion errors due to syntax or bad configurations), 312 projects re-
mained. Finally, we eliminated projects our AST walker, imple-
mented using the GumTree algorithm [26], could not handle.
This left us with a total of 200 projects.

Next, we removed projects that were too small, that is, hav-
ing fewer than 10 files, or fewer than 500 lines of code. We also
removed projects that had no merge conflicts. These selection
criteria were used, since we are interested in the effect of design
issues and merge conflicts in moderately large, collaborative
projects. Our final data set contained 143 projects. Table I pro-
vides a summary of features and other descriptive information
of the projects in our study.

We also manually categorized the domain of the projects by
looking at the project description and using the categories used
by Souza et al. [20]. Table II has the summary of the domains of
the projects.

TABLE I. PROJECT STATISTICS

Dimension Max Min Average Std. dev.
Line count 542,571 751 75,795 105,280.1
Duration (Days) 6,386 42 1,674.54 1,112.11
Developers 105 4 72.76 83.19
Total Commits 30,519 16 3,894.48 5,070.73
Total Merges 4,916 1 252.60 522.73
Total Conflicts 227 1 25.86 39.49

TABLE II. DISTRIBUTION OF PROJECTS BY DOMAIN

Domain Percentage
Development 61.98%

System Administration 12.66%
Communications 6.42%
Business & Enterprise 8.10%
Home & Education 3.11%
Security & Utilities 2.61%
Games 3.08%
Audio & Video 2.04%

B. Code smell detection tool selection

We chose to use InFusion [36] to identify code smells be-
cause it has been found to identify the broadest set of smells [28].
Researchers have found that the metric-based approach identi-
fied by Marinescu [49] has the highest recall and precision (pre-
cision: 0.71, recall: 1.00) for finding most code smells [59]. In-
Fusion uses this same principle and set of thresholds for identi-
fying code smell, which was another reason for using InFusion.
Researchers [1] have evaluated the smell detection performance
of InFusion where they found it to have precision of 0.84, recall
of 1.00 and an F-measure of 0.91.

C. Conflict Identification

Since Git does not record information about merge conflicts,
we had to recreate each merge in the corpus in order to determine
if a conflict had occurred. We used Git’s default algorithm, the
recursive merge strategy, as this is the most likely to used by the
average Git project. From our sample of 143 projects we ex-
tracted 556,911 commits. This included 36,122 merge commits.
The average number of merge commits was 253. Out of all the
merges, 6,979 (19.32%) were identified as leading to a conflict.
The distribution of merge conflicts is shown in Figure 1. We see
that projects experience an average of 25 merge conflicts, or
19.32% of all merges. Merge conflicts, therefore, are a common
part of the developer experience.

We then collected statistics regarding each file involved in a
conflict. We tracked the size of the changes being merged, the
difference between the two branches (in terms of LOC, AST dif-
ference, and the number of methods and classes involved). To
determine the AST difference, we used the Gumtree algorithm
[26]. We also tracked the number of authors involved in the
merge.

D. Conflict Type Classification

To answer our second research question, we needed to cate-
gorize the conflicts based on the type of changes (e.g.,
whitespace or comment added vs. variable name changed).

We identified two categories of conflicts. The first one being
semantic conflicts which requires understanding the program
logic of the changes in order to successfully resolve the conflict.
The other type of conflict is non-semantic which easier and less
risky to resolve since they do not affect the programs’ function-
ality. We manually classify 606 randomly sampled commits. We
classify each conflict based on the type of changes causing the
merge conflict (e.g., whitespace or comment added vs. variable
name changed). Two of the authors coded 300 of these commits
using qualitative thematic coding [26]. They achieved an inter-
rater agreement of over 80% on 20% of the data: we obtained a
Cohen’s Kappa of 0.84. Having reached an agreement, one of
the authors classified the remaining 306 commits. The codes and
their definitions are given in Table III.

TABLE III. CONFLICT CATEGORIES

Category Definition Example
Semantic Conflicts involving

semantic changes
A refactoring and a bug fix
involving the same lines.

Non-Semantic Conflicting changes
in formatting/comments

One of the branches
contains only formatting
changes (whitespace).

To train the classifier (to differentiate between semantic and

non-semantic commits) we use a set of 24 features, including:
the total size of the versions (LOC) involved in a conflict, the
number of statements, methods and classes involved in the con-
flict. Details of the features are in the accompanying website
[16]. We use the set of 606 (10%) commits as training data for a
machine learning classifier. We used Adaptive Boost (Ada-
Boost) ensemble classifier that can only be used for binary clas-
ses. We categorized the 6,979 conflicting commits. We use 10
fold cross-validation to test the performance of our classier. The
precision of predicting the semantic conflicts is high at 0.75.

E. Measuring Code Smells and Tracking Lines

 For each of the 6,979 conflicting commits we collected the
code smells that were associated with a conflict. We needed to
track them to measure the effect of having the smell and being
involved in a conflict on the quality of the resulting code.
 We use GumTree [26] for our analysis, as it allows us to
track elements at an AST level. This way we can track only the
elements that we are interested in (statements), and ignore other

changes that do not actually change the code. The GumTree al-
gorithm works by determining if any AST node was changed, or
had any children added, deleted or modified. The algorithm
maps the correspondence between nodes in two different trees,
which allows it to accurately track the history of the program
elements. This algorithm has unique advantages over other line
tracking algorithms, such as SZZ [42]. These advantages in-
clude: ignoring whitespace changes, tracking a node even if its
position in the file changes (e.g. because lines have been added
or deleted before the node of interest), and tracking nodes across
refactorings, as long as the node stays within the same file. Using
this technique, we can track a node even when it has been
moved, for example, because of an extract method refactoring.

For each node (in the AST) involved in a conflict and having
a smell, we identify all future commits that touched the file con-
taining said node and tracked the AST node forward in time. For
Java, it is possible for multiple statements to be expressed in the
same line (e.g., a local variable declaration inside an if state-
ment). In this case, we considered the innermost statement, as
this gives the most precise results.

F. Commit Classification

In order to answer our third research question, we needed to
categorize the type of change for a code commit. For our pur-
pose, code commits can be broadly grouped into one of two cat-
egories: (1) bug-fixes and improvements (modifying existing
code), and (2) Other — commits that introduced new features or
functionality (adding new code) or commits that were related to
documentation, test code, or other concerns. Two key problems
with this classification are: (1) it is not always trivial to deter-
mine which category a commit falls under, and (2) larger pro-
jects see a huge amount of activity. Manual classification of all
commits was not an option, and we decided to use machine
learning techniques for this purpose, rather than limiting the sta-
tistical power of our study (especially as arbitrarily dropping the
most active subjects would clearly potentially introduce a large
bias into our results.)

In order to build a classifier, we randomly selected and man-
ually labeled a set of 1,500 commits. The first two authors
worked independently to classify the commits. Their datasets
had a 33% overlap, which we used to calculate the inter-rater
reliability. This gave us a Cohen's Kappa of 0.90. In our training
dataset, the portion of bug-fixes was 46.30%, with 53.70% of the
commits assigned to the Other category. Some keywords indi-
cating bug-fixes or improvements were Fix, Bug, Resolves,
Cleanup, Optimize, and Simplify, and their derivatives. Any-
thing that did not fit into this pattern was marked as Other.

Not all bug-fixing commits include these keywords or direct
reference to the issue-id; commit messages are written by the
initial contributor, and there are few guidelines. A similar obser-
vation was made by Bird et al. [7], who performed an empirical
study showing that bias could be introduced due to missing link-
ages between commits and bugs. This means that we are con-
servative in identifying commits as bug-fixes.

We trained a Naive-Bayes (NB) classifier and a Support
Vector Machine (SVM) by using the SciKit toolset [56]. We
used 10% of the data to train the classifier. We applied the clas-
sifiers to the training data using a 10-fold cross-validation. As
before, we used the F1-score to measure and compare the per-
formance of the models. The NB classifier outperformed the

Fig. 1. Distribution of merge conflicts. The vertical line represents the
mean (25.86)

SVM. Therefore, we used the NB classifier to classify our full
corpus.

Table IV has the quality indicator characteristics of the NB
classifier. Tian et al. [61], suggest that for keyword-based clas-
sification the F1 score is usually around 0.55, which also occurs
in our case. While our classifier is far from perfect, it is compa-
rable to "good" classifiers in the literature, and we believe it is
unlikely for the biases to have a confounding effect on our anal-
ysis. Since our analysis only relies on relative counts of bug-
fixes for statements, so long as we do not systematically under-
count bug-fixes for only some statements, our results should be
valid.

TABLE IV. NAIVE BAYES CLASSIFIER DETAILS

 Precision Recall F1-measure
Bug-fix 0.63 0.43 0.51
Other 0.74 0.86 0.80

 For each line of code resulting from a merge conflict, we
count the number of (future) commits in which it appears, as
long as those commits are identified as bug-fixes. We stop the
tracking when we encounter a commit that is classified as Other.
Our reasoning is that once an element has seen a change that is
not a bug-fix, it is no longer fair to assume that subsequent bug
fixes are associated with the original merge conflict.

G. Regression analysis

In order to answer our third research question that is related
to the effect of code smells on quality of the resulting code, we
needed to build a regression model to identify the impact of code
smell on the number of bug-fixes that occur on lines of code that
are associated with a code smell and a merge conflict. We use
Generalized Linear Regression [15]. The dependent variable
(count of bug fixes occurring on smelly and conflicting lines)
follows a Poisson distribution. Therefore, we use a Poisson re-
gression model with a log linking function.

In order to build our model, we collect information about the
smells and the conflicts. We use Understand [63] to count the
number of references to, and from other files to the files that are
involved in a conflict. We collect this information as a proxy for
the importance of the file. We assume that the more a file is ref-
erenced by other files, the more central that file is, and hence
more important. Any change in these central files can increase
the chance of a change being required in other files, and there-
fore lead to multiple developers making changes to these files,
which can in turn lead to conflicting changes.

We also collect the following factors for each commit such
as the difference between the two merged branches in terms of
LOC, AST difference, and the number of methods and classes
being affected. Our intuition is that larger “chunks” of changes
should have a higher chance of causing a conflict. We also cal-
culate the number of authors who made commits to the branches
that were merged, since there is a higher likelihood of conflicts
if multiple developers are involved.

We also determine the experience level of each developer by
splitting them into two categories: core and non-core. To calcu-
late the category for each developer, we split the development
history into quarters. For each commit a developer is classified
as core if he is in the top 20% of the developers in that quarter
(calculated by the number of commits). Otherwise he is noncore.
We use this process because, in open source projects, authors

come and go. Also, an author can be classified as core and non-
core in different quarters, depending on his contribution to the
project.

After collecting these metrics, we checked for multi-colline-
arity using the Variance Inflation Factor (VIF) of each predictor
in our model [15]. VIF describes the level of multicollinearity
(correlation between predictors). A VIF score between 1 and 5
indicates moderate correlation with other factors, so we selected
the predictors with VIF score threshold of 5. This step was nec-
essary since the presence of highly correlated factors forces the
estimated regression coefficient of one variable to depend on
other predictor variables that are included in the model.

IV. RESULTS

A. RQ1: Do program elements that are invovled in merge
conflicts contain more code smells?

As a first step, we collect the total number of code smells for
each of the 6,979 conflicting commits in our dataset. Table V
contains the percentage of each smell and the percentage of pro-
jects that have a particular smell. We find that external and in-
ternal duplication have a much higher instance than others when
considering the percentage of smells in the dataset. However,
about 50% of projects have Data Class and SAP Breakers
smells.

TABLE V. PERCENTAGE OF CODE SMELLS

Smell
% of smells in

the full dataset
% of projects w/

smell
External Duplication 42.79 22.53
Internal Duplication 34.05 23.80
Feature Envy 4.04 28.42
Data Clumps 3.71 20.36
Intensive Coupling 3.50 14.30
Data Class 3.18 48.05
Blob Operation 2.58 30.05
Sibling Duplication 2.35 10.86
SAP Breakers 1.52 52.76
God Class 0.89 19.10
Schizophrenic Class 0.58 20.00
Message Chains 0.33 5.34
Tradition Breaker 0.17 6.33
Refused Parent Bequest 0.19 5.25
Shotgun Surgery 0.01 1.72
Distorted Hierarchy 0.003 0.36

We next compare the mean number of code smells associated
with each merge commit, for cases when they conflict and for
cases when they do not conflict. Note that a commit can involve
multiple files, and a file can contain multiple smells. We calcu-
late the total number of smells for each file. For example, a con-
flicting merge commit in the commandhelper project (with
the SHA1 of a91faa) contains one conflicting file, and that
conflicting files contains a total of 8 smells.

The mean number of smells in conflicting program elements
is 6.54, whereas the mean for non-conflicting program elements
is 1.92. The results are statistically significant (Mann-Whitney
test, U=6.24e6, p<4.77e-10.); we use the non-parametric Mann-
Whitney test since our population is not normally distributed.
Therefore, we find that program elements that are involved in
merge conflicts are, on average, more smelly than entities that
are not involved in a merge conflict.

B. RQ2: Which code smells are more associated with merge
conflicts?

Next, we compare the occurrence of each individual smell
across conflicting and non-conflicting commits. Since we are
performing multiple tests, we have to adjust the significance
value accordingly to account for multiple hypothesis correction.
We use the Bonferroni correction, which gives us an adjusted p-
value of 0.0031.

For 12 out of 16 total smells, we find significant differences
(Mann-Whitney test, α<0.0031) between the means of conflict-
ing and non-conflicting commits. The conflicting commits have
a higher incidence of smells. Table VI presents the results for
code smells where the difference was significant along with the
p-values of individual comparisons..

TABLE VI. MEAN NUMBER OF SMELLS IN CONFLICTS VS. NON-CONFLICT
COMMITS CALCULATED PER COMMIT

Smell Smells in
conflicts

Smells in non
conflict

p-value

God Class 1.23 0.25 0.0001
Data Clump 0.65 0.27 0.0001
Sibling Duplication 0.58 0.10 0.000001
Data Class 0.47 0.12 0.000001
Distorted Hierarchy 0.45 0.05 0.000001
Unnecessary Coupling 0.33 0.10 0.0001
Internal Duplication 0.24 0.08 0.000001
SAP Breaker 0.12 0.07 0.000001
Tradition Breaker 0.10 0.05 0.00007
Blob Operation 0.07 0.06 0.0001
Message Chain 0.04 0.03 0.00062
Shotgun Surgery 0.01 0.00769 0.00021

 The following are the top 5 smells in terms of their (mean)
numbers per conflict: God Class, Data Clump, Sibling Duplica-
tion, Data Class and Distorted Hierarchy. It is worth noting that
the distribution of smells per conflict (Table VI) is different from
Table V. This is because in Table VI we are looking only at the
smells that affect the entities involved in merge conflicts,
whereas Table V shows all the smells in the project. This dis-
crepancy is an effect of the fact that merge conflicts exhibit a
different smell pattern compared to the overall project.

Next, we perform two steps. First, we investigate the corre-
lation between each smell and the merge conflicts to identify
which of the above smells are more strongly associated with con-
flicts. Then, we categorize merge conflicts into semantic and
non-semantic conflicts to further explore the associations of
smells to these types of conflicts.
 Code smells and conflicts. We perform a correlation analy-
sis between the count of smells and merge conflicts to distill
which of the smells from Table VI are more closely associated
with conflicts, and should be attended to. We use the Kendall
correlation test because it is a non-parametric test and it is more
accurate with a smaller sample size. As we perform the tests for
each smell, we are splitting out data into smaller chunks. There-
fore, the Kendall correlation test is more appropriate.
 We find that, except for External Duplication, Schizophrenic
Class, SAP Breaker and Data Class all smells are correlated with
merge conflicts (Kendall correlation test, α<0.0031). We report
the statistically significant results in Table VII.

The three strongest correlation to conflicts are with the fol-
lowing smells: God Class, Internal Duplication and Distorted
Hierarchy. These smells all relate to cases where object-oriented

design principles of encapsulation and structuring is not well
used, leading to problems with developers making conflicting
parallel changes. We discuss these reasons further in Section V.

TABLE VII. CORRELATION BETWEEN CONFLICT AND SMELL COUNT

Smell Correlation p-value
God class 0.18 <0.0001
Internal Duplication 0.17 <0.0001
Distorted Hierarchy 0.13 <0.0001
Refused Parent Bequest 0.10 <0.0001
Message Chain 0.10 <0.0001
Data clump 0.09 <0.0001
Feature Envy 0.09 <0.0001
Tradition Breaker 0.09 <0.0001
Blob Operation 0.08 <0.0001
Shotgun Surgery 0.07 <0.0001
Unnecessary Coupling 0.05 0.00007
Sibling Duplication 0.04 0.00021

Types of conflicts and their classification. Not all conflicts
are the same, some involve changes to the actual code structure
and require the developer to understand the logic behind the
changes before they can be integrated (semantic conflicts),
whereas others can be formatting or cosmetic changes (non-se-
mantic). Semantic conflicts are inherently harder to resolve.
Therefore, we investigate whether specific types of code smells
are more likely to occur with semantic conflicts. We use the con-
flict classification methodology in Section III-D.

Recall, we manually labeled 606 conflicts to classify them
into semantic or non-semantic, which we then use for the auto-
mated classification of 6,979 commits. We present the distribu-
tion between the manual and automatic classification in Table
VIII. The distributions of semantic and non-semantic conflicts
in the automatically classified data match the distribution of our
manual labeling (training data), which shows the efficacy of the
automated classifier.

TABLE VIII. CONFLICT TYPES BASED ON THEIR FREQUENCY OF
OCCURRENCE

 Semantic conflicts are more common (76.12% in the manu-
ally labeled data and 75.23% in the automated classified data),
as compared to the non-semantic conflicts (23.88% in manually
labeled and 24.77% in automated classified data).
 Semantic conflicts and code smells: To understand if there
is any correlation between semantic conflicts and the types of
code smells we perform the Kendall correlation test for each
smell in the presence of semantic merge conflicts (in our total
dataset). We use the Kendall correlation test and found signifi-
cant correlation (α<0.0031) only for Internal Duplication and
Blob Operation. Table IX contains all correlations, where the
cells marked with ** are significant.

Since the correlation for both Blob Operation and Internal
Duplication are small, we perform an odds-ratio test to under-
stand which of these smells are more likely to be involved in a
Semantic merge conflict, as compared to entities that do not have
these smells, but were involved in a conflict. Since we are per-
forming two comparisons, we have to adjust the significance

Category # of Con-
flicts

% of total
(classifier)

% of total
(training)

Semantic 5,250 75.23% 76.12%
Non-Semantic 1,729 24.77% 23.88%

value to adjust for multiple hypothesis testing. Like in the previ-
ous sections, we performed a Bonferroni correction, which gives
us significance value of α=0.0025 to test at.

TABLE IX. SMELL CATEGORIES FOR SEMANTIC CONFLICTS
(SIGNIFICANCE LEVEL α=0.0031)

Smell Correlation p-value
Blob Operation ** 0.05 0.0030
Internal Duplication ** 0.07 0.0002
Message Chain 0.01 0.4970
Refused Parent Bequest 0.03 0.0492
SAP Breaker -0.02 0.2652
Schizophrenic Class -0.03 0.0832
Shotgun Surgery -0.008 0.6597
Sibling Duplication 0.031 0.1029
Tradition Breaker 0.018 0.3291
Unnecessary Coupling -0.01 0.5681
Data Class -0.02 0.1524
Data Clumps 0.030 0.1103
Distorted Hierarchy 0.034 0.0670
Feature Envy 0.009 0.6206
God Class 0.050 0.0072

We performed an odds ratio test (Fisher’s exact test) for the
Blob Operations and find that they are 1.7 times more likely to
be involved in a Semantic merge conflict (odds ratio: 1.77,
p=0.0024). Blob Operations are methods that are very complex
and have many responsibilities. Therefore, any change to the
method will likely impact multiple lines, which may intersect
with logical changes made by another developer to the same
method. This explains the high likelihood of their involvement
in Non-Semantic conflicts.

For Internal Duplication, we found that they are 1.55 times
more likely to be involved in merge conflict (odds ratio: 1.55,
p=0.0001.) We attribute this to the fact that, because of duplica-
tion, a change has to be repeated in multiple locations. This in-
creases the chances of developers making overlapping changes.

C. RQ3: Do code smells associated with merge conflicts
affect the quality of the resulting code?

We aim to model the effects of code smells on the bugginess
of a line of code involved in a merge conflict. As defect predic-
tion literature has already identified several factors (e.g., the size
of the module under investigation [25], number of committers
[64], centrality of files [13]) that affect bugginess, we include
them in our model also. Table X lists the final set of factors that
we use, which include metrics that are code-based (F1, F2),
change-related (F5-F8), author-related (F3, F4), and code-
smells. We compute whether a developer is core or non-core
based on our methodology in Section III-G.

To answer our third research question, we build two Gener-
alized Linear Models (GLM). The first contains the number of
code smells as a factor, and the second does not. The first (Pois-
son regression) model is built with a log linking function as ex-
plained in Section III-G. After filtering the factors with VIF ≤ 5,
we had a set of 8 factors out of 43 factors. All eight factors were
statistically significant (see Table X). The predicted value is the
total number of bug fixes occurring on a line of code that was
involved in a merge conflict. Note that smell count was a signif-
icant factor in the model (p<0.05), with an estimate of 0.427.

The McFadden Adjusted R2 [35] of this model is 0.47. We
calculated McFadden’s Adjusted R2 as a quality indicator of the

model because there is no direct equivalent of R2 metric for Pois-
son regression. The ordinary least square (OLS) regression ap-
proach to goodness-of-fit does not apply for Poisson regression.
Moreover, adjusted R2 values like McFadden’s cannot be inter-
preted as one would interpret OLS R2 values. McFadden’s Ad-
justed R2 values tend to be considerably lower than those of the
R2. Values of 0.2 to 0.4 represent an excellent fit [35]

TABLE X. POISSON REGRESSION MODEL PREDICTING BUG-FIX
OCCURRENCE ON LINES OF CODE INVOLVED IN A MERGE CONFLICT

Factor# Factor Estimate p-value
F1 In Deps 3.195 <0.0001
F2 Out Deps -0.053 <0.0001
F3 Noncore author -3.799 <0.0001
F4 No. Authors 0.129 <0.0001
F5 No. Classes -0.373 <0.0001
F6 No. Methods 0.244 <0.0001
F7 AST diff 0.001 <0.0001
F8 LOC diff 0.00002571 <0.0001
F9 Number of Smells 0.427 <0.0001

To understand the impact that code smells have, we built the

same model by removing the total number of smells as a factor.
This decreased the adjusted-R2 from 0.47 to 0.44. We can there-
fore conclude that code smells have a significant impact on the
final quality of the code. Since McFadden’s adjusted R2 penal-
izes a model for including too many predictors, had the code
smells not mattered, removing it could have increased the ad-
justed-R2 instead of reducing it.

V. DISCUSSION

To the best of our knowledge, we are the first to investigate
the association of code smells with that of merge conflicts, and
their impact on the bugginess of the merged results (line of
code). We find that program elements that are involved in merge
conflicts contain, on average, 3 times more code smells than pro-
gram elements that are not involved in a merge conflict.

Not all code smells are equally correlated to merge conflicts.
12 out of the 16 code smells that co-occur with conflicts are sig-
nificant associated with merge conflicts. The top five code
smells from this list are: God class, Message Chain, Internal
Duplication, Distorted Hierarchy and Refused Parent Bequest.
Interestingly, the only (significant) code smells associated with
Semantic conflicts are Blob Operation and Internal Duplication.

All the above code smells arise when developers do not fully
exploit the advantages of object-oriented design, leading to high
coupling, duplication, or large containers. These factors lay the
groundwork for parallel conflicting efforts, where developers
step on each other’s toes. For example, the Blob Operation is a
large and complex method that grows over time becoming hard
to maintain. In such a situation, multiple developers may need to
make changes to the same method and, therefore, collide when
merging. Similarly, Internal Duplication arises when code is du-
plicated, which bloats methods and makes it hard to ensure all
clones evolve in the same way. In such a situation, developers
might have to “touch” multiple parts of the method to ensure all
clones are being updated, causing situations of parallel, conflict-
ing edits.

It is interesting to observe that Semantic merge conflicts are
associated with smells at the method level. For example, the
Blob Operation and Internal Duplication smells are 1.77 times

and 1.55 times, respectively, more likely to be present in a se-
mantic conflict as compared to a non-semantic conflict. This in-
dicates that bloated methods or duplicated code in methods in-
crease the spread of the change a developer is likely to make,
which in turn increases the likelihood of two or more changes
conflicting during a merge. Prior work has associated code du-
plication with negative consequences such as increased mainte-
nance cost [11,43] and faults [5,38]. Our findings indicate that
duplication also negatively impacts the collaborative workflow
by making it difficult to merge changes.

It is worth noting that while smells, such as God Class have
a significant correlation with overall merge conflicts, they do not
have a significant correlation with semantic merge conflicts. We
posit that a large container (class) with cohesive logical units
(methods) can lead to multiple developers making parallel
changes that are localized to specific areas (methods) and do not
intersect. In these cases, when changes are merged conflicts can
arise because of the movement of code or formatting changes
(non-semantic conflicts). The same reasoning is also applicable
for Distorted Hierarchy, Refused Parent Bequest and Message
Chain. In contrast, as discussed earlier method-level smells seem
are correlated with semantic conflicts.

 To the best of our knowledge, ours is the first empirical
study to investigate the effects of merge conflicts and code
smells on the bugginess of code. We found that the presence of
code smells on the lines of code involved in a merge conflict has
a significant impact on its bugginess (see Table X). Including
code smells as a factor increases the McFadden’s adjusted R2
value from 0.44 to 0.47. Since McFadden’s adjusted R2 penal-
izes a model for including too many predictors, an increase in
the value signifies that adding code smells as a factor was valu-
able. We find that factors such as incoming-dependencies and
the number of code smells have the highest correlation estimate,
indicating their importance to the model.

We find that some factors, such as non-core author, number
of classes, and outward dependencies have a negative effect on
bugginess. This is counter intuitive. We had assumed that
changes from multiple non-core authors are more likely to be
buggy. We believe that the following reasons lead to this sur-
prising outcome. It might be the case that non-core contributors
are more thorough and put more effort towards submitting code
that is less bug prone. Or it might be the process via which new-
comers’ contributions are accepted. For example, core develop-
ers might pay more attention to changes coming from non-core
contributors. Further empirical studies on the differences in re-
view processes for core vs. non-core developers will be interest-
ing. We also found that the number of classes involved in a con-
flict has a negative correlation to its bugginess. This might be
because changes that involve multiple classes are more likely to
be refactoring or licensing changes, and therefore, less likely to
introduce bugs.

Implications: Our findings have a number of implications
for software practitioners, tool builders and researchers.

Code smells have been historically associated with mainte-
nance issues, which are known to be a problem in the long term.
However, developers are often unaware of code smells. Yama-
shita et al. found that a considerable portion (32%) of developers
did not know about code smells [66]. Our findings shed a differ-
ent light on the impact of code smells and on the importance of

addressing them. Our results show that code smells are an im-
mediate concern for day-to-day activity such as merging
changes.

Merge conflicts delay the project by requiring an examina-
tion of the conflict, and disrupting the developers’ workflow.
Anecdotal evidence shows that developers hate resolving con-
flicts. Developers are known to follow informal processes (e.g.,
check in partial code, email the team about impending changes
etc.) or rush to commit their work in an effort to avoid having to
resolve conflicts [14]. A developer may also choose to delay the
incorporation of others’ work, fearing that a conflict may be hard
to resolve [14]. Such processes can have a detrimental effect on
team productivity and morale. This situation can only become
worse as the project evolves on two fronts. First, the number of
code smells is likely to increase as the project ages [1]. Second,
there is a likelihood of increase in merge conflicts as more de-
velopers start to contribute. Our results indicate that practitioners
should pay more attention to code smells, as it will not only
make the code quality better, but will also help them minimize
the number of merge conflicts they need to resolve.

Practitioners, when investigating the root cause of a merge
conflict can start by looking for smelly program elements in the
code. Moreover, since changes that involve entities containing
code smells are more likely to lead to semantic merge conflicts,
integrators (or code reviewers) should pay particular attention
to and attempt to remove code smells when reviewing commits.
Practitioners should also pay attention to “good” software engi-
neering processes when they deal with smelly program ele-
ments. For example, when changes are being made to smelly
parts of the code base developers should merge more frequently
and perform more thorough code reviews.

Our results show that code smells are a good predictor of
merge conflict and the level of difficulty of that conflict. There-
fore, tool builders can use the information of incidence of code
smells to support distributed work – either in predicting likeli-
hood of conflicts or their difficulty. Code smells can also be
used as a factor to schedule tasks (e.g., program elements that
have code smells should not be edited in parallel) or assign tasks
(e.g., developers with higher experience should work on smelly
program elements).

Our results have implications for researchers. Since code
smells together with merge conflicts can predict bugginess, re-
searchers can use this information in bug prediction models to
increase their effectiveness. To the best of our knowledge, no
merge conflict prediction tool exists. Our results show that code
smells have a strong association with merge conflicts, therefore,
researchers can use this information to predict impending merge
conflicts. Our results also have implications in testing. For ex-
ample, increasing the test coverage of smelly lines that were in-
volved in a merge conflict can be used as an objective/fitness
function in the field of search based software engineering.

VI. THREATS TO VALIDITY

Our research findings may be subject to the concerns that we
list below. We have taken all possible steps to neutralize the im-
pacts of these possible threats, but some couldn’t be mitigated
and it’s possible that our mitigation strategies may not have been
effective.

Bias due to sampling: Our samples have been from a single
source - Github. This may be a source of bias, and our findings

may be limited to open source programs from Github and not
generalizable to commercial programs. However, the threat is
minimal since we analyze a large number of projects spanning
eight different domains.

Bias due to tools used: The smell detection tool we used
uses static code analysis to identify smells and research shows
that code smells that are “intrinsically historical” such as Diver-
gent Change, Shotgun Surgery and Parallel Inheritance are dif-
ficult to detect by just exploiting static source code analysis [55].
So the number occurrence of such "intrinsically historical"
smells should be different when historical information based
smell detection technique is used.

Secondly, we used the Gumtree algorithm [26] for tracking
program elements across commits. However, the algorithm used
is unable to track program elements across renames or move-
ment to another folder. Further, refactoring that involves modi-
fication of scope, such as moving the code out of the current
compilation unit also causes the algorithm to lose track of the
program element after refactoring.

Bias Due to using classifiers: We use machine learning to
group conflicts into the two categories, and to determine whether
a commit was a bug-fix. As with any classifier, we have some
mislabeling. While our results do not require those results to be
anywhere near perfect, this threat is low as our classifiers have
good F1-measure and high precision.

Regarding the bug-fix classifier, our recall and precision
measures are on par with past work [7]. Since our analysis relies
on relative count of bug fixes, as long as we do not systemati-
cally undercount bug fixes, our results are valid.

Finally, we have assumed that all bugs were found and fixed
by developers when we use it as a metric of bugginess of merged
lines of code. This may not always be true, and hence our results
are conservative.

VII. CONCLUSIONS

In this paper, we study the history of 143 open source pro-
jects, from which we extract 6,979 merge conflicts to see if there
is any correlation between code smells and merge conflicts. We
found that entities involved in merge conflicts contain almost 3
times more code smells than non-conflicting entities.

To have a better understanding of the effect of code smells
on merge conflicts, we categorized conflicts into semantic con-
flicts – changes to the AST and hard to resolve – and non-se-
mantic – changes that are cosmetic. We found two method-level
code smells (Blob Operation and Internal Duplication) to be sig-
nificantly correlated with semantic conflicts. More specifically,
methods that contained the Blob Operation and Internal Dupli-
cation smells were more likely to be involved in a semantic
merge conflict, by 1.77 times and 1.55 times respectively. We
also found that code smells have a significant impact on the final
quality of the code. Count of code smells was a significant factor
when we modeled the bugginess of lines of code involved in a
merge conflict.

Our results show that code smells, thought to be a mainte-
nance issue and often neglected by practitioners, have an imme-
diate impact in how distributed development is managed. Their
presence is not only associated with difficult merge conflicts (se-
mantic), but also with the likely-hood of bugs getting introduced
in the code base.

ACKNOWLEDGMENTS

This work was funded in part by NSF IIS-1559657,CCF-
1560526. This work was also funded in part by IBM. We would
also like to thank the Oregon State University HCI group for
their input and feedback on the research.

REFERENCES
[1] Ahmed, I., Mannan, U. A., Gopinath, R., & Jensen, C. An empirical study

of design degradation: How software projects get worse over time.
Empirical Software Engineering & Measurement (ESEM), 2015, pp.1-10.

[2] Apache Software Foundation. Apache maven project.
http://maven.apache.org

[3] Apel, S., Leßenich, O., & Lengauer, C. Structured merge with auto-
tuning: balancing precision and performance. International Conference on
Automated Software Engineering, 2012, (pp. 120-129).

[4] Apel, S., Liebig, J., Brandl, B., Lengauer, C., & Kästner, C.
Semistructured merge: rethinking merge in revision control systems. 13th
European conference on Foundations of software engineering, 2011, (pp.
190-200).

[5] Bakota, T., Ferenc, R., & Gyimothy, T. Clone smells in software
evolution. IEEE International Conference on Software Maintentance,
2007, (pp. 24-33).

[6] Biehl, J. T., Czerwinski, M., Smith, G., & Robertson, G. G. FASTDash: a
visual dashboard for fostering awareness in software teams. Human
factors in computing systems, 2007, (pp. 1313-1322).

[7] Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., &
Devanbu, P. Fair and balanced?: bias in bug-fix datasets. European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, 2009, (pp. 121-130).

[8] Boehm, B. W., Brown, J. R., & Lipow, M. (Quantitative evaluation of
software qualityinternational conference on Software engineering, 1976
(pp. 592-605).

[9] Brun, Y., Holmes, R., Ernst, M. D., & Notkin, D. Proactive detection of
collaboration conflicts. European conference on Foundations of software
engineering, 2011, (pp. 168-178).

[10] Buckley, J., Mens, T., Zenger, M., Rashid, A., & Kniesel, G. (2005).
Towards a taxonomy of software change. Journal of Software
Maintenance and Evolution: Research and Practice, 17(5), 309-332.

[11] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s University, Kingston, Canada, Tech. Rep. 2007-541,
2007.

[12] Canfora, G., Cerulo, L., & Di Penta, M. (2007, May). Identifying Changed
Source Code Lines from Version Repositories. In MSR (Vol. 7, p. 14).

[13] Cataldo, M., & Herbsleb, J. D. (2013). Coordination breakdowns and their
impact on development productivity and software failures. IEEE
Transactions on Software Engineering, 39(3), 343-360.

[14] Cleidson R. B. de Souza, David Redmiles, and Paul Dourish. 2003.
"Breaking the Code", Moving Between Private and Public Work in
Collaborative Software Development. ACM SIGGROUP Conference on
Supporting Group Work (GROUP ’03) pp. 105–114.

[15] Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple
regression/correlation analysis for the behavioral sciences. Routledge.

[16] Companion Website: https://goo.gl/ORpLkU
[17] Costa, C., Figueiredo, J. J., Ghiotto, G., & Murta, L. (2014).

Characterizing the Problem of Developers' Assignment for Merging
Branches. International Journal of Software Engineering and Knowledge
Engineering, 24(10), 1489-1508.

[18] Cunningham, W. (1993). The WyCash portfolio management system.
ACM SIGPLAN OOPS Messenger, 4(2), 29-30.

[19] Da Silva, I. A., Chen, P. H., Van der Westhuizen, C., Ripley, R. M., &
Van Der Hoek, A. Lighthouse: coordination through emerging design.
2006 OOPSLA workshop on eclipse technology eXchange (pp. 11-15).

[20] De Souza, L. B. L., & de Almeida Maia, M. Do software categories impact
coupling metrics?. In Mining Software Repositories (MSR), 2013, (pp.
217-220).

[21] Deligiannis, I., Shepperd, M., Roumeliotis, M., & Stamelos, I. (2003). An
empirical investigation of an object-oriented design heuristic for
maintainability. Journal of Systems and Software, 65(2), 127-139.

[22] Deligiannis, I., Stamelos, I., Angelis, L., Roumeliotis, M., & Shepperd,
M. (2004). A controlled experiment investigation of an object-oriented
design heuristic for maintainability. Journal of Systems and Software,
72(2), 129-143.

[23] Dewan, P., & Hegde, R. (2007). Semi-synchronous conflict detection and
resolution in asynchronous software development. ECSCW 2007, 159-
178.

[24] Dourish, P., & Bellotti, V. Awareness and coordination in shared
workspaces. 1992 ACM conference on Computer-supported cooperative
work (pp. 107-114). ACM.

[25] El Emam, K., Benlarbi, S., Goel, N., & Rai, S. N. (2001). The
confounding effect of class size on the validity of object-oriented metrics.
IEEE Transactions on Software Engineering, 27(7), 630-650.

[26] Falleri, J. R., Morandat, F., Blanc, X., Martinez, M., & Monperrus, M.
(2014). Fine-grained and accurate source code differencing. 29th
international conference on Automated software engineering (pp. 313-
324).

[27] Fontana, F. A., Mäntylä, M. V., Zanoni, M., & Marino, A. (2016).
Comparing and experimenting machine learning techniques for code
smell detection. Empirical Software Engineering, 21(3), 1143-1191.

[28] Fontana, F. A., Mariani, E., Mornioli, A., Sormani, R., & Tonello, A.
(2011, March). An experience report on using code smells detection tools.
2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshop (ICSTW), pp. 450-457.

[29] Fowler, M., & Beck, K. (1999). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

[30] Godfrey, M. W., & Zou, L. (2005). Using origin analysis to detect
merging and splitting of source code entities. IEEE Transactions on
Software Engineering, 31(2), 166-181.

[31] Gorton, I., & Liu, A. (2002). Software component quality assessment in
practice: successes and practical impediments. 24th International
Conference on Software Engineering (pp. 555-558). ACM.

[32] Guimarães, M. L., & Silva, A. R. (2012) Improving early detection of
software merge conflicts. 34th International Conference on Software
Engineering (ICSE), (pp. 342-352).

[33] Hall, T., Zhang, M., Bowes, D., & Sun, Y. (2014). Some code smells have
a significant but small effect on faults. ACM Transactions on Software
Engineering and Methodology (TOSEM), 23(4), 33.

[34] Hattori, L., & Lanza, M. (2010, May). Syde: A tool for collaborative
software development. 32nd International Conference on Software
Engineering-Volume 2 (pp. 235-238).

[35] Hensher, D. A., & Stopher, P. R. (Eds.). (1979). Behavioural travel
modelling. London: Croom Helm.

[36] InFusion, http://www.intooitus.com/inFusion.html. (accessed at January
2014)

[37] Izurieta, C., & Bieman, J. M. (2007,). How software designs decay: A
pilot study of pattern evolution. Empirical Software Engineering and
Measurement. (pp. 449-451).

[38] Juergens, E., Deissenboeck, F., Hummel, B., & Wagner, S. (2009). Do
code clones matter?. International Conference on Software Engineering.
(pp. 485-495).

[39] Kagdi, H., Gethers, M., Poshyvanyk, D., & Collard, M. L. (2010,
October). Blending conceptual and evolutionary couplings to support
change impact analysis in source code. In Reverse Engineering (WCRE),
2010 17th Working Conference on (pp. 119-128). IEEE.

[40] Kasi, B. K., & Sarma, A. Cassandra: Proactive conflict minimization
through optimized task scheduling. 2013 International Conference on
Software Engineering (pp. 732-741). IEEE Press.

[41] Khomh, F., Di Penta, M., Guéhéneuc, Y. G., & Antoniol, G. (2012). An
exploratory study of the impact of antipatterns on class change-and fault-
proneness. Empirical Software Engineering, 17(3), 243-275.

[42] Kim, S., Zimmermann, T., Pan, K., & James Jr, E. (2006,). Automatic
identification of bug-introducing changes. International Conference on
Automated Software Engineering, ASE'06. (pp. 81-90).

[43] Koschke, R. (2007). Survey of research on software clones. In Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[44] Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt: From
metaphor to theory and practice. Ieee software, 29(6), 18-21.

[45] Lanza, M., & Marinescu, R. (2007). Object-oriented metrics in practice:
using software metrics to characterize, evaluate, and improve the design
of object-oriented systems. Springer Science & Business Media.

[46] Li, W., & Shatnawi, R. (2007). An empirical study of the bad smells and
class error probability in the post-release object-oriented system
evolution. Journal of systems and software, 80(7), 1120-1128.

[47] Lippe, E., & Van Oosterom, N. (1992, November). Operation-based
merging. In ACM SIGSOFT Software Engineering Notes (Vol. 17, No. 5,
pp. 78-87). ACM.

[48] Marinescu, R. (2001). Detecting design flaws via metrics in object-
oriented systems. International Conference and Exhibition on
Technology of Object-Oriented Languages and Systems, (pp. 173-182).

[49] Marinescu, R. (2004, September). Detection strategies: Metrics-based
rules for detecting design flaws. In Software Maintenance, 2004.
Proceedings. 20th IEEE International Conference on (pp. 350-359). IEEE.

[50] Martin, R. C. (2003). Agile software development: principles, patterns,
and practices. Prentice Hall PTR.

[51] Mens, T. (2002). A state-of-the-art survey on software merging. IEEE
transactions on software engineering, 28(5), 449-462.

[52] Moha, N., Rezgui, J., Guéhéneuc, Y. G., Valtchev, P., & El Boussaidi, G.
(2008). Using FCA to suggest refactorings to correct design defects. In
Concept Lattices and Their Applications (pp. 269-275). Springer Berlin
Heidelberg.

[53] Nieminen, A. (2012,). Real-time collaborative resolving of merge
conflicts. International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), (pp. 540-
543).

[54] Olbrich, S., Cruzes, D. S., Basili, V., & Zazworka, N. (2009). The
evolution and impact of code smells: A case study of two open source
systems. 2009 3rd international symposium on empirical software
engineering and measurement (pp. 390-400). IEEE Computer Society.

[55] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., &
Poshyvanyk, D. (2013). Detecting bad smells in source code using change
history information. Automated software engineering (ASE), (pp. 268-
278).

[56] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12(Oct), 2825-2830.

[57] Sarma, A., & Van Der Hoek, A. (2006, October). Towards awareness in
the large. In Global Software Engineering, 2006. ICGSE'06. International
Conference on (pp. 127-131).

[58] Sarma, A., Noroozi, Z., & Van Der Hoek, A. (2003). Palantír: raising
awareness among configuration management workspaces. International
Conference on Software Engineering, (pp. 444-454).

[59] Schumacher, J., Zazworka, N., Shull, F., Seaman, C., & Shaw, M. (2010).
Building empirical support for automated code smell detection.
International Symposium on Empirical Software Engineering and
Measurement (p. 8).

[60] Servant, F., Jones, J. A., & Van Der Hoek, A. (2010). CASI: preventing
indirect conflicts through a live visualization. ICSE Workshop on
Cooperative and Human Aspects of Software Engineering (pp. 39-46).

[61] Tian, Y., Lawall, J., & Lo, D. (2012, June). Identifying linux bug fixing
patches. In Proceedings of the 34th International Conference on Software
Engineering (pp. 386-396). IEEE Press.

[62] Tiobe,http://tiobe.com/index.php/content/paperinfo/tpci/index.html

[63] Understand™ Static Code Analysis Tool. (2017).

[64] Weyuker, E. J., Ostrand, T. J., & Bell, R. M. (2008). Do too many cooks
spoil the broth? Using the number of developers to enhance defect
prediction models. Empirical Software Engineering, 13(5), 539-559.

[65] Wloka, J., Ryder, B., Tip, F., & Ren, X. (2009, May). Safe-commit
analysis to facilitate team software development. In Proceedings of the
31st International Conference on Software Engineering (pp. 507-517).
IEEE Computer Society.

[66] Yamashita, A. F., & Moonen, L. Do developers care about code smells?
An exploratory survey. WCRE, 2013 (Vol. 13, pp. 242-251).

[67] Zazworka, N., Shaw, M. A., Shull, F., & Seaman, C. Investigating the
impact of design debt on software quality. 2nd Workshop on Managing
Techinical Debt, 2011

[68] Zimmermann, T., Kim, S., Zeller, A., & Whitehead Jr, E. J. Mining
version archives for co-changed lines. 2006 International Workshop on
Mining Software Repositories (pp. 72-75).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

