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Merge conflicts have long plagued software development. With larger and more

dispersed teams comes greater risk of developers working on the same code at the same

time. While merge conflicts are known to be painful, their exact impact on software is still

largely unknown. Are merge conflicts an isolated problem, or are they linked to bigger

issues in the code base? This thesis tries to answer this. The first 2 parts of this thesis

look at the correlation between code smells, bugs, and merge conflicts. Our results show

that code that is involved in merge conflicts most frequently is more likely to have bugs,

or exhibit code smells.

To better understand where tool support is lacking, in the 3rd part, we investigated

how developers resolve merge conflicts. We used a sensemaking approach to analyze

qualitative data collected in situ, where participants were working on production software.

We found different patterns developers use when resolving merge conflicts, and different

areas where they struggled. Our results show that merge conflicts have a real impact on

software quality and also show potential avenues for tool improvements.

Finally, we propose a way to predict the difficulty of a merge conflict. This can allow

developers to plan ahead and set aside time and resources to handle the merge conflict

resolution.
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AN INVESTIGATION OF THE EFFECTS OF MERGE CONFLICTS

ON COLLABORATIVE SOFTWARE DEVELOPMENT

1 INTRODUCTION

Software development is a team effort. Modern version control systems, such as Git,

allow teams to efficiently work together while keeping track of the changes they make. This

allows organizations to build reliable systems by pooling the talents of many developers.

However, collaborative development is not always a smooth experience. With large teams,

it’s not uncommon for two developers to make changes to the same piece of code at the

same time [137, 117, 108]. This results in merge conflicts, which are only apparent after

developers have finished all their changes. Once a merge conflict occurs, developers need

to interrupt whatever they are doing, understand the other set of changes being made,

and finally resolve the conflict before they can move on with their work.

However, despite the prevalence of merge conflicts, their impact on collaborative

software development is not fully understood. In this dissertation, we investigate the

effect of merge conflicts on collaborative software development from three angles. First,

we looked at the impact on software quality. Second, we looked at the human perspective,

and try to understand what makes a merge conflict resolution difficult. Third, we looked

at we can do to improve the merge conflict resolution proces and make developers lives

easier.

Our first research goal is to understand whether and in what ways merge conflicts

are related to software quality. Are they just a nuisance, or are they an indicator of a

deeper problem? To understand this, we conducted 2 large scale empirical studies on over
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100 software projects. We analyzed almost 7,000 merge conflicts and 32,000 merges to

understand the code where merge conflicts occur.

This investigation included 2 threads. First we looked at the design of the software

itself. Problems in the design of software are made evident by the presence of code smells.

Code smells indicate an area in the code where the design is lacking [65]. They can

adversely impact the maintainability of the code [96]. Code smells can be automatically

detected [103] and have been used extensively by researchers as a proxy for software

quality [103, 12, 143, 122, 121, 75, 105]. The presence of code smells makes the code more

difficult to change, as the changes will impact more of the code. This, in turn, can increase

the likelihood of merge conflicts occurring.

In the second thread we looked at software correctness. We investigated whether

code became lower quality after being modified after a merge conflict. Since a merge

conflict requires developers to “cobble” together a solution from 2 distinct sets of changes,

it’s likely that they could introduce bugs in the process. We investigated if merge conflicts

are associated with future bug fixes.

The two threads of the investigation showed a strong correlation between merge

conflicts and code smells. Similarly, we also observed a strong correlation between merge

conflicts and bug proneness. We also noticed that lines involved in semantic merge conflicts

(which occurred because of a conflict in code logic) were a lot more likely to have bug

fixes applied to them in the future. All this indicates that merge conflicts are more than

a nuisance: They are a severe problem.

Given this strong correlation between merge conflicts and software quality, it is

important to help developers during merge conflict resolution. However, before we can

design a solution, we need to understand where they struggle. Therefore, our second

research goal is to understand what makes conflict resolution difficult.

We can’t understand this by analyzing source code, so we conducted a field study
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of developers in the wild. We conducted an observation study of professional developers

working on production code. This gave us a rich dataset, which we analyzed from a

qualitative perspective.

Our results showed that, when resolving a merge conflict, developers need to gather

information from many disparate information sources. In some cases, our participants had

to collect information from over 20 different artifacts, spread across 6 different categories

(e.g., code, history, documentation, etc). Each category contains a different type of data

presented in a different way and it’s up to the developer to decide which information

is relevant and how pieces of different information are related. Our results showed that

participants struggled find the right information, and also to contextualize it. This is the

heart of why merge conflict resolution is difficult.

Helping developers gauge this difficulty ahead of time was our third research goal.

Specifically, we investigated ways of giving developers advanced notice about how difficult

a merge conflict resolution might be, so they’d be less inclined to ”kick the can” further

down the road by finding a way to postpone the resolution [117]. Postponing merge

conflict resolution is attractive to developers because they don’t have to step “out of the

flow” of what they’re doing.. In fact, a study found that at least 56.18% of developers

have deferred a merge conflict resolution at least once [117].

If developers know what type of merge conflict resolution experience is coming,

they can make an informed decision about what to do instead of procrastinating because

there are too many unknowns. Given enough information, they could, for example, feel

justified in consulting a team member or setting aside part of their work day to address

the problem. Out results showed that it’s possible to accurately predict the difficulty of a

merge conflict.
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1.1 Research goals

To summarize, this dissertation has 3 research goals:

1. Understand the link between merge conflicts, code smells and future bug fixes;

2. Understand what makes merge conflict resolution difficult, and;

3. Help developers prepare for a resolution, by giving them an advance indication of

the difficulty of the resolution.

1.2 Thesis structure

This thesis is structured around 4 papers:

• Chapter 2 presents the paper “An Empirical Examination of the Relationship Be-

tween Code Smells and Merge Conflicts” co-written with Iftekhar Ahmed, Umma

Ayda Mannan, Anita Sarma and Carlos Jensen, and presented at ESEM 2017.

• Chapter 3 presents the paper “An Empirical Investigation into Merge Conflicts and

their Effect on Software Quality,” written with Iftekhar Ahmed, Anita Sarma and

Carlos Jensen. Both the papers answer the first research goal.

• Chapter 4 presents the paper “Struggles in Sensemaking: A Field Study of Merge

Conflict Resolution Behavior,” written with Yenifer Ramirez, Anita Sarma and Car-

los Jensen, which is currently under review at ICSME 2020. This answers the second

research goal.

• Chapter 5 presents the paper “Planning for Untangling: Predicting the Difficulty of

Merge Conflict” written with Iftekhar Ahmed, Rafael Leano and Anita Sarma, and

presented at ICSE 2020. This papers addresses our third and final research goal.
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Finally, in Chapter 6 we present conclusions and future directions for the work.



6

2 AN EMPIRICAL EXAMINATION OF THE RELATIONSHIP
BETWEEN CODE SMELLS AND MERGE CONFLICTS

Iftekhar Ahmed, Caius Brindescu2, Umme Ayda Mannan, Carlos Jensen, Anita Sarma

2017 ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM)

2.1 Introduction

Modern software systems are becoming more and more complex and requires a large

development team to develop and maintain. Modern Version Control Systems (VCS) have

made parallel development easier by streamlining and coordinating code management,

branching, and merging. This enables large teams to work together efficiently. But it

has been shown that this process is sometimes halted when isolated private development

lines are synchronized and the developer runs into merge conflicts. Conflicts distract the

developers as they have to interrupt their workflow to resolve them. Developers have

to reason about the conflicting changes and find an acceptable merging solution. This

process of conflict resolution can itself introduce bugs. Prior work has found that in

complex merges, developers may not have the expertise or knowledge to make the right

decisions [50, 118] which might degrade the quality of the merged code.

Researchers have looked at many ways of preventing merge conflicts, and make

developer’s lives easier when they do occur. Researchers have proposed workspace aware-

ness tools [24, 48, 77, 135, 139] that help prevent merge conflicts by making the developers

aware of each other’s changes. Also, new merge techniques [15, 16, 90] have been pro-

posed that would reduce the number of merge conflicts. However, little research has been

2Both authors contributed equaly
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devoted to the causes of merge conflicts. Are there any endemic issues that arise from the

design itself? We are interested in knowing whether the design of the codebase has an

effect on the merge conflicts and what is its impact on the overall quality.

Just like merge conflicts, bad design can inflict pain on developers. Bad design makes

maintenance and future changes difficult and error prone. Code smells, an indication of

bad design, imply that the structure of the code is badly organized. This can lead to

developers stepping on each other’s toes as they make their changes. This, in turn, can

lead to merge conflicts.

If there are “fundamental flaws” in the design itself, as the project grows, and the

codebase grows in size and complexity, understanding and working around these “rough

spots” becomes more challenging. Thus, the chances of creating a conflict increases be-

cause of the need to generate workarounds. This means that as projects grow, merge

conflicts should be more likely to occur, especially around the smelly parts of the code.

We aim to examine whether there is a correlation between the two, to examine whether

such a link is credible.

In order to evaluate the design we look at the code smells [97]. We investigate

if there is a connection between entities that contain code smells, the code smells they

contain, and the merge conflicts that surround the smelly entities.

It is important to note that not all smells are created equal. Some might be more

associated with a merge conflict than others. For example, a class is considered a God Class

if it contains an oversized part of the entire functionality of the final product. Therefore,

any changes have a high likelihood of involving changes in the God Class. When multiple

developers are working, they all have a high likelihood of touching the God class. This

can easily lead to merge conflicts down the road. If the changes involved are not trivial

then the task of merging them will be not trivial as well.

In this paper, we investigate the following questions:
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RQ1: Do program elements that are involved in merge conflicts contain more code

smells?

RQ2: Which code smells are more associated with merge conflicts?

RQ3: Do code smells associated with merge conflicts affect the quality of the re-

sulting code?

To answer these questions, we investigated 143 projects. Across them, we had

36,122 merge commits, out of which 6,979 were conflicting. We identified 7,467 code

smells instances across our whole corpus. We found that merge conflicts involved more

“smelly” program elements than merges that did not conflict. Our results also show that

not all code smells are created equal. Some are more likely to cause problems than others.

When we looked at the difficulty of merge conflicts, we found that some of the smells are

more likely to be involved in semantic merge conflicts than others. Finally, we found that

code smells have a negative impact on code quality.

2.2 Related Work

2.2.1 Code smells and their impact

Various measures of software quality have been proposed. Boehm et al. [?], and

Gorton et al. [70], to mention a few, have explored measures including completeness, us-

ability, testability, maintainability, reliability, efficiency etc. Some of these metrics are

difficult to measure, especially in the absence of requirement documents or other support-

ing information. Researchers have also used code smells as a measurement of software

quality [104, 103], though smells are often focused on future maintainability issues. The

concept of code smells was first introduced by Fowler [65]. Code smells are symptoms

of poor design and implementation choices [65] in code base which eventually affect the

maintainability of a software system [96]. Studies also showed that there is an association
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between code smells and bugs [100, 120] and code maintainability problems [65]. Code

smells also leads to design debt. Zazworka et al. [155] found that the God Class smell is

related to technical debt. Ahmed et al. [14] found how software gets worse over time in

terms of design degradation. They analyzed 220 open source projects in their study and

confirmed that ignoring the smells leads to “software decay”.

Researchers have proposed many different approaches for detecting code smell, such

as metric based [53, 54, 97, 100, 103] and meta-model based [115]. Researchers used

different techniques for identifying code smells. Fontana et al. [63] used machine learning

techniques for detecting code smells. Researchers also used both static analysis [53, 54, 100]

and techniques that rely on the evaluation of successive versions of a software system [88,

97, 122].

2.2.2 Work related to code smells and bugs

Researchers have also considered the relationship between the presence of code

smells and bug appearance in the code base. Khomh et al. [91] showed that classes

affected by design problems (“code smells”) are more likely to contain bugs in the future.

Hall et al. [75] also found relationships between code smells and fault-proneness. Accord-

ing to their study some code smells indicate fault-proneness in the code base but the effect

size is small (under 10%). Zazworka et al. [155] found that God Classes are fault-prone

in some cases. Li et al. [103] also studied the relationship between code smells and the

probability of faults in industrial systems, and found that the Shotgun Surgery smell was

correlated with a higher probability of faults. To the best of our knowledge no work has

tried to research on the relationship between code smells and how it impacts collaborative

work flow, specifically merging individual works.
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2.2.3 Merge conflicts

Several studies have been done on identification of conflicts and developers’ aware-

ness about potential conflicts. Awareness is frequently defined as an understanding of the

activities of others to give a context for one’s activities [58], which is a very important issue

in Global Software Engineering (GSE) [134]. Researchers have looked at different tech-

niques of avoiding merge conflicts by increasing the developer’s awareness of the changes

others made to the source code. Biehl et al. [24] proposed FastDash, which sends notifica-

tions about potential conflicts when two or more developers are modifying the same file.

Another awareness tool called Syde by Hatori et al. [77] consider the source code changes

at Abstract Syntax Tree (AST) level operations to detect conflicts by comparing tree op-

erations. Da Silva et al. [48] introduced Lighthouse, which is another tool for increasing

awareness among developers about the conflict. Palant́ır by Sarma et al. [135] detects the

changes made by other developers and show them in a graphical, non-intrusive manner.

Servant et al. [139] also presented a tool and visualization that can be used to understand

the impact of developers’ changes to prevent indirect conflicts.

Guimaraes et al. [74] introduce WeCode which continuously merges uncommitted

and committed changes in the IDE to detect merge conflicts as soon as possible. Brun et

al. [31] used the similar approach in Crystal, to detect both direct and indirect conflicts.

A software development model presented by Dewan et al. [55] aims to reduce conflicts by

notifying developers who are working on the same file.

2.2.4 Work related to merge conflict resolution

Researchers have also studied different ways of managing the merge of developers’

changes to efficiently resolve conflicts. This resolution could be either in an automated

way or by preserving and presenting a useful context for the developer trying to resolve

the conflict. A comprehensive survey of merge approaches was done by Mens [110]. Apel

et al. [16, 15] presented a merging technique called semistructured merge. This considers
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the structure of the code which is being merged. Operation based merging by Lippe et

al. [101] considers all the changes performed during development, in addition to the result,

when merging.

Kasi and Sarma [90] present a technique of avoiding merge conflicts by scheduling

tasks in a way that the probability of a conflict is minimized. SafeCommit by Wloka

et al. [152] uses a static analysis approach to identify changes in a commit with no test

failure. They proposed to use this approach when detecting indirect conflicts.

2.2.5 Conflict categorization

Researchers have come up with different ways of categorizing conflicts. Sarma et

al. [135] grouped conflicts into two categories. One is direct conflicts, where the changes

conflict directly. The other is indirect conflicts, where the files don’t conflict directly, but

integrating the changes cause build or test failures. Similarly, Brun et al. [31], categorized

conflicts as first level (textual) conflicts and second level (build and test failure) conflicts.

Buckley et al. [33] proposed a taxonomy of changes based on properties like time of change,

change history, artifact granularity etc. Their taxonomy deals with software changes in

general or conflicts at a coarser level.

2.2.6 Tracking code changes and conflicts

Researchers have proposed various algorithms for tracking individual lines of code

across versions of software. Canfora et al. [35] proposed an algorithm that uses Leven-

stein edit distance to compute similarity of lines, matching “chunks” of changed code.

Zimmerman et al. [159] proposed annotation graphs which works at the region level for

tracking lines. Godfrey et al. [69] described “origin analysis”, a technique for tracking

entities across multiple revisions of a code base by storing inexpensively computed and

easily comparable “fingerprints” of interesting software entities in each revision of a file.

These fingerprints can then be used to identify areas of the code that are likely to match
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before applying more expensive techniques to track code entities. Finally, Kim et al. [93]

propose an algorithm, SZZ, for tracking the origin of lines across changes.

2.3 Methodology

Our goal was to identify the effect of design issues on merge conflicts and the qual-

ity of the resulting code (whether these changes are associated with bug fixes or other

improvements.)

Here we discuss the various steps of collecting data: (1) selecting the sample of

projects for the study, (2) identifying which merge commits lead to merge conflicts, (3)

tracking the lines of code through different versions and merges to investigate how the

code evolved and which lines were associated with conflicts, (4) identifying code smells

at the time of the conflicting merge commit. Next, we determine the nature of the code

updates (e.g. was the commit a result of a bug fix or a new feature etc.) taking place on

those lines. In order to do this, we manually classify a subset of the commits as bug-fix

related or other. We train a machine-learning classifier to classify the rest. Finally, we

build a model to predict the total number of bug fixes that would occur on a conflicting

line that also contained a code smell. The following subsections describe each of these

steps in detail.

2.3.1 Project Selection Criteria

We wanted to make sure that our findings would be representative of the code

developed in real world, thus we selected active, open source projects hosted in GitHub.

We decided to use Java as the language of focus. This decision was influenced by 2 factors:

First, Java is one of the most popular languages (according to the number of projects

hosted on Github and the Tiobe index [3]). The second was the availability of code smell

detection tools for Java, as compared to other programming languages. Further, for ease
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of building and analyzing the code, we select projects using the Maven [4] build system.

We started by randomly selecting 900 projects, the first to show up when using the

GitHub search mechanism. From these, we eliminated aggregate projects (which could

skew our results), leaving 500 projects. After eliminating projects that did not compile

(for reasons such as unavailable dependencies, or compilation errors due to syntax or bad

configurations), 312 projects remained. Finally, we eliminated projects our AST walker,

implemented using the GumTree algorithm [61], could not handle. This left us with a

total of 200 projects.

Next, we removed projects that were too small, that is, having fewer than 10 files,

or fewer than 500 lines of code. We also removed projects that had no merge conflicts.

These selection criteria were used, since we are interested in the effect of design issues and

merge conflicts in moderately large, collaborative projects. Our final data set contained

143 projects. Table 2.1 provides a summary of features and other descriptive information

of the projects in our study.

We also manually categorized the domain of the projects by looking at the project

description and using the categories used by Souza et al. [49]. Table 2.2 has the summary

of the domains of the projects.

TABLE 2.1: Project Statistics

Dimension Max Min Average Std. dev.

Line count 542,571 751 75,795.00 105,280.10
Duration (Days) 6,386 42 1,674.54 1,112.11
# Developers 105 4 72.76 83.19
Total Commits 30,519 16 3,894.48 5,070.73
Total Merges 4,916 1 252.60 522.73
Total Conflicts 227 1 25.86 39.49

2.3.2 Code smell detection tool selection

We chose to use InFusion [2] to identify code smells because it has been found

to identify the broadest set of smells [17]. Researchers have found that the metric-based
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TABLE 2.2: Distribution of Project by Domain

Domain Percentage

Development 61.98%
System Administration 12.66%
Communications 6.42%
Business & Enterprise 8.10%
Home & Education 3.11%
Security & Utilities 2.61%
Games 3.08%
Audio & Video 2.04%

approach identified by Marinescu [104] has the highest recall and precision (precision: 0.71,

recall: 1.00) for finding most code smells [138]. InFusion uses this same principle and set

of thresholds for identifying code smell, which was another reason for using InFusion.

Researchers [14] have evaluated the smell detection performance of InFusion where they

found it to have precision of 0.84, recall of 1.00 and an F-measure of 0.91.

2.3.3 Conflict Identification

Since Git does not record information about merge conflicts, we had to recreate

each merge in the corpus in order to determine if a conflict had occurred. We used Git’s

default algorithm, the recursive merge strategy, as this is the most likely to used by the

average Git project. From our sample of 143 projects we extracted 556,911 commits. This

included 36,122 merge commits. The average number of merge commits was 253. Out of

all the merges, 6,979 (19.32%) were identified as leading to a conflict. The distribution of

merge conflicts is shown in Figure 2.1. We see that projects experience an average of 25

merge conflicts, or 19.32% of all merges. Merge conflicts, therefore, are a common part of

the developer experience.

We then collected statistics regarding each file involved in a conflict. We tracked

the size of the changes being merged, the difference between the two branches (in terms

of LOC, AST difference, and the number of methods and classes involved). To determine

the AST difference, we used the Gumtree algorithm [?]. We also tracked the number of
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authors involved in the merge.

FIGURE 2.1: Distribution of merge conflicts. The vertical line represents the mean
(25.86)

2.3.4 Conflict Type Classification

To answer our second research question, we needed to categorize the conflicts based

on the type of changes (e.g., whitespace or comment added vs. variable name changed).

We identified two categories of conflicts. The first one being semantic conflicts

which requires understanding the program logic of the changes in order to successfully

resolve the conflict. The other type of conflict is non-semantic which easier and less risky

to resolve since they do not affect the programs’ functionality. We manually classify 606

randomly sampled commits. We classify each conflict based on the type of changes causing

the merge conflict (e.g., whitespace or comment added vs. variable name changed). Two

of the authors coded 300 of these commits using qualitative thematic coding [47]. They

achieved an interrater agreement of over 80% on 20% of the data: we obtained a Cohen’s

Kappa of 0.84. Having reached an agreement, one of the authors classified the remaining

306 commits. The codes and their definitions are given in Table 2.3.
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TABLE 2.3: Conflict Categories

Category Definition Example

Semantic Conflicts involving semantic
changes

A refactoring and a bug fix in-
volving the same lines.

Non-Semantic Conflicting changes in format-
ting/comments

One of the branches con-
tains only formatting changes
(whitespace).

To train the classifier (to differentiate between semantic and non-semantic commits)

we use a set of 24 features, including: the total size of the versions (LOC) involved in a

conflict, the number of statements, methods and classes involved in the conflict. Details

of the features are in the accompanying website [5]. We use the set of 606 (10%) commits

as training data for a machine learning classifier. We used Adaptive Boost (AdaBoost)

ensemble classifier that can only be used for binary classes. We categorized the 6,979

conflicting commits. We use 10 fold cross-validation to test the performance of our classier.

The precision of predicting the semantic conflicts is high at 0.75.

2.3.5 Measuring Code Smells and Tracking Lines

For each of the 6,979 conflicting commits we collected the code smells that were

associated with a conflict. We needed to track them to measure the effect of having the

smell and being involved in a conflict on the quality of the resulting code.

We use GumTree [61] for our analysis, as it allows us to track elements at an AST

level. This way we can track only the elements that we are interested in (statements),

and ignore other changes that do not actually change the code. The GumTree algorithm

works by determining if any AST node was changed, or had any children added, deleted

or modified. The algorithm maps the correspondence between nodes in two different trees,

which allows it to accurately track the history of the program elements. This algorithm has

unique advantages over other line tracking algorithms, such as SZZ [93]. These advantages

include: ignoring whitespace changes, tracking a node even if its position in the file changes
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(e.g. because lines have been added or deleted before the node of interest), and tracking

nodes across refactorings, as long as the node stays within the same file. Using this

technique, we can track a node even when it has been moved, for example, because of an

extract method refactoring.

For each node (in the AST) involved in a conflict and having a smell, we identify

all future commits that touched the file containing said node and tracked the AST node

forward in time. For Java, it is possible for multiple statements to be expressed in the same

line (e.g., a local variable declaration inside an if statement). In this case, we considered

the innermost statement, as this gives the most precise results.

2.3.6 Commit Classification

In order to answer our third research question, we needed to categorize the type of

change for a code commit. For our purpose, code commits can be broadly grouped into one

of two categories: (1) bug-fixes and improvements (modifying existing code), and (2) Other

— commits that introduced new features or functionality (adding new code) or commits

that were related to documentation, test code, or other concerns. Two key problems with

this classification are: (1) it is not always trivial to determine which category a commit

falls under, and (2) larger projects see a huge amount of activity. Manual classification of

all commits was not an option, and we decided to use machine learning techniques for this

purpose, rather than limiting the statistical power of our study (especially as arbitrarily

dropping the most active subjects would clearly potentially introduce a large bias into our

results.)

In order to build a classifier, we randomly selected and manually labeled a set of

1,500 commits. The first two authors worked independently to classify the commits. Their

datasets had a 33% overlap, which we used to calculate the inter-rater reliability. This

gave us a Cohen’s Kappa of 0.90. In our training dataset, the portion of bug-fixes was

46.30%, with 53.70% of the commits assigned to the Other category. Some keywords
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indicating bug-fixes or improvements were Fix, Bug, Resolves, Cleanup, Optimize, and

Simplify, and their derivatives. Anything that did not fit into this pattern was marked as

Other.

Not all bug-fixing commits include these keywords or direct reference to the issue-id;

commit messages are written by the initial contributor, and there are few guidelines. A

similar observation was made by Bird et al. [?], who performed an empirical study showing

that bias could be introduced due to missing linkages between commits and bugs. This

means that we are conservative in identifying commits as bug-fixes.

We trained a Naive-Bayes (NB) classifier and a Support Vector Machine (SVM) by

using the SciKit toolset [124]. We used 10% of the data to train the classifier. We applied

the classifiers to the training data using a 10-fold cross-validation. As before, we used

the F1-score to measure and compare the performance of the models. The NB classifier

outperformed the SVM. Therefore, we used the NB classifier to classify our full corpus.

Table 2.4 has the quality indicator characteristics of the NB classifier. Tian et

al. [147], suggest that for keyword-based classification the F1 score is usually around 0.55,

which also occurs in our case. While our classifier is far from perfect, it is comparable

to “good” classifiers in the literature, and we believe it is unlikely for the biases to have

a confounding effect on our analysis. Since our analysis only relies on relative counts of

bug-fixes for statements, so long as we do not systematically undercount bug-fixes for only

some statements, our results should be valid.

TABLE 2.4: Naive Bayes classifier details

Precision Recall F1-measure

Bug-fix 0.63 0.43 0.51
Other 0.74 0.86 0.80

For each line of code resulting from a merge conflict, we count the number of (future)

commits in which it appears, as long as those commits are identified as bug-fixes. We stop
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the tracking when we encounter a commit that is classified as Other. Our reasoning is

that once an element has seen a change that is not a bug-fix, it is no longer fair to assume

that subsequent bug fixes are associated with the original merge conflict.

2.3.7 Regression analysis

In order to answer our third research question that is related to the effect of code

smells on quality of the resulting code, we needed to build a regression model to identify

the impact of code smell on the number of bug-fixes that occur on lines of code that are

associated with a code smell and a merge conflict. We use Generalized Linear Regres-

sion [41]. The dependent variable (count of bug fixes occurring on smelly and conflicting

lines) follows a Poisson distribution. Therefore, we use a Poisson regression model with a

log linking function.

In order to build our model, we collect information about the smells and the conflicts.

We use Understand [8] to count the number of references to, and from other files to the files

that are involved in a conflict. We collect this information as a proxy for the importance

of the file. We assume that the more a file is referenced by other files, the more central

that file is, and hence more important. Any change in these central files can increase the

chance of a change being required in other files, and therefore lead to multiple developers

making changes to these files, which can in turn lead to conflicting changes.

We also collect the following factors for each commit such as the difference between

the two merged branches in terms of LOC, AST difference, and the number of methods

and classes being affected. Our intuition is that larger “chunks” of changes should have

a higher chance of causing a conflict. We also calculate the number of authors who made

commits to the branches that were merged, since there is a higher likelihood of conflicts

if multiple developers are involved.

We also determine the experience level of each developer by splitting them into two

categories: core and non-core. To calculate the category for each developer, we split the
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development history into quarters. For each commit a developer is classified as core if he

is in the top 20% of the developers in that quarter (calculated by the number of commits).

Otherwise he is noncore. We use this process because, in open source projects, authors

come and go. Also, an author can be classified as core and non-core in different quarters,

depending on his contribution to the project.

After collecting these metrics, we checked for multi-collinearity using the Variance

Inflation Factor (VIF) of each predictor in our model [41]. VIF describes the level of

multicollinearity (correlation between predictors). A VIF score between 1 and 5 indicates

moderate correlation with other factors, so we selected the predictors with VIF score

threshold of 5. This step was necessary since the presence of highly correlated factors

forces the estimated regression coefficient of one variable to depend on other predictor

variables that are included in the model.

2.4 Results

2.4.1 RQ1: Do program elements that are invovled in merge conflicts contain
more code smells?

As a first step, we collect the total number of code smells for each of the 6,979

conflicting commits in our dataset. Table 2.5 contains the percentage of each smell and

the percentage of projects that have a particular smell. We find that external and internal

duplication have a much higher instance than others when considering the percentage of

smells in the dataset. However, about 50% of projects have Data Class and SAP Breakers

smells.

We next compare the mean number of code smells associated with each merge

commit, for cases when they conflict and for cases when they do not conflict. Note that

a commit can involve multiple files, and a file can contain multiple smells. We calculate

the total number of smells for each file. For example, a conflicting merge commit in the
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TABLE 2.5: Percentage of code smells

Smell
% of smells in
the full dataset

% of projects w/
smell

External Duplication 42.79 22.53
Internal Duplication 34.05 23.80
Feature Envy 4.04 28.42
Data Clumps 3.71 20.36
Intensive Coupling 3.50 14.30
Data Class 3.18 48.05
Blob Operation 2.58 30.05
Sibling Duplication 2.35 10.86
SAP Breakers 1.52 52.76
God Class 0.89 19.10
Schizophrenic Class 0.58 20.00
Message Chains 0.33 5.34
Tradition Breaker 0.17 6.33
Refused Parent Bequest 0.19 5.25
Shotgun Surgery 0.01 1.72
Distorted Hierarchy 0.003 0.36

commandhelper project (with the SHA1 of a91faa) contains one conflicting file, and that

conflicting files contains a total of 8 smells.

The mean number of smells in conflicting program elements is 6.54, whereas the

mean for non-conflicting program elements is 1.92. The results are statistically significant

(Mann-Whitney test, U=6.24e6, p<4.77e-10.); we use the non-parametric Mann-Whitney

test since our population is not normally distributed. Therefore, we find that program

elements that are involved in merge conflicts are, on average, more smelly than entities

that are not involved in a merge conflict.

2.4.2 RQ2: Which code smells are more associated with merge conflicts?

Next, we compare the occurrence of each individual smell across conflicting and

non-conflicting commits. Since we are performing multiple tests, we have to adjust the

significance value accordingly to account for multiple hypothesis correction. We use the

Bonferroni correction, which gives us an adjusted p-value of 0.0031.

For 12 out of 16 total smells, we find significant differences (Mann-Whitney test,
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α<0.0031) between the means of conflicting and non-conflicting commits. The conflicting

commits have a higher incidence of smells. Table 2.6 presents the results for code smells

where the difference was significant along with the p-values of individual comparisons..

TABLE 2.6: Mean number of Smells in Conflicts vs. Non-conflict Commits Calculated
per Commit

Smell
Smells in
conflicts

Smells in non
conflict p-value

God Class 1.23 0.25 0.0001
Data Clump 0.65 0.27 0.0001
Sibling Duplication 0.58 0.10 0.000001
Data Class 0.47 0.12 0.000001
Distorted Hierarchy 0.45 0.05 0.000001
Unnecessary Coupling 0.33 0.10 0.0001
Internal Duplication 0.24 0.08 0.000001
SAP Breaker 0.12 0.07 0.000001
Tradition Breaker 0.10 0.05 0.00007
Blob Operation 0.07 0.06 0.0001
Message Chain 0.04 0.03 0.00062
Shotgun Surgery 0.01 0.00769 0.00021

The following are the top 5 smells in terms of their (mean) numbers per conflict: God

Class, Data Clump, Sibling Duplication, Data Class and Distorted Hierarchy. It is worth

noting that the distribution of smells per conflict (Table 2.6) is different from Table 2.5.

This is because in Table 2.6 we are looking only at the smells that affect the entities

involved in merge conflicts, whereas Table 2.5 shows all the smells in the project. This

discrepancy is an effect of the fact that merge conflicts exhibit a different smell pattern

compared to the overall project.

Next, we perform two steps. First, we investigate the correlation between each

smell and the merge conflicts to identify which of the above smells are more strongly

associated with conflicts. Then, we categorize merge conflicts into semantic and non-

semantic conflicts to further explore the associations of smells to these types of conflicts.

Code smells and conflicts. We perform a correlation analysis between the count

of smells and merge conflicts to distill which of the smells from Table 2.6 are more closely
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associated with conflicts, and should be attended to. We use the Kendall correlation test

because it is a non-parametric test and it is more accurate with a smaller sample size.

As we perform the tests for each smell, we are splitting out data into smaller chunks.

Therefore, the Kendall correlation test is more appropriate.

We find that, except for External Duplication, Schizophrenic Class, SAP Breaker

and Data Class all smells are correlated with merge conflicts (Kendall correlation test,

α<0.0031). We report the statistically significant results in Table 2.7.

The three strongest correlation to conflicts are with the following smells: God Class,

Internal Duplication and Distorted Hierarchy. These smells all relate to cases where

object-oriented design principles of encapsulation and structuring is not well used, leading

to problems with developers making conflicting parallel changes. We discuss these reasons

further in Section 2.5.

TABLE 2.7: Correlation between conflict and smell count

Smell Correlation p-value

God class 0.18 <0.0001
Internal Duplication 0.17 <0.0001
Distorted Hierarchy 0.13 <0.0001
Refused Parent Bequest 0.10 <0.0001
Message Chain 0.10 <0.0001
Data clump 0.09 <0.0001
Feature Envy 0.09 <0.0001
Tradition Breaker 0.09 <0.0001
Blob Operation 0.08 <0.0001
Shotgun Surgery 0.07 <0.0001
Unnecessary Coupling 0.05 0.00007
Sibling Duplication 0.04 0.00021

Types of conflicts and their classification. Not all conflicts are the same, some

involve changes to the actual code structure and require the developer to understand the

logic behind the changes before they can be integrated (semantic conflicts), whereas others

can be formatting or cosmetic changes (non-semantic). Semantic conflicts are inherently

harder to resolve. Therefore, we investigate whether specific types of code smells are more
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likely to occur with semantic conflicts. We use the conflict classification methodology in

Section 2.3.4.

Recall, we manually labeled 606 conflicts to classify them into semantic or non-

semantic, which we then use for the automated classification of 6,979 commits. We present

the distribution between the manual and automatic classification in Table 2.8. The distri-

butions of semantic and non-semantic conflicts in the automatically classified data match

the distribution of our manual labeling (training data), which shows the efficacy of the

automated classifier.

TABLE 2.8: Conflict types based on their frequency of occurrence

Category
# of

Conflicts
% of total
(classifier)

% of total
(training)

Semantic 5,250 75.23% 76.12%
Non-Semantic 1,729 24.77% 23.88%

Semantic conflicts are more common (76.12% in the manually labeled data and

75.23% in the automated classified data), as compared to the non-semantic conflicts

(23.88% in manually labeled and 24.77% in automated classified data).

Semantic conflicts and code smells: To understand if there is any correlation

between semantic conflicts and the types of code smells we perform the Kendall correlation

test for each smell in the presence of semantic merge conflicts (in our total dataset). We

use the Kendall correlation test and found significant correlation (α<0.0031) only for

Internal Duplication and Blob Operation. Table 2.9 contains all correlations, where the

cells marked with ** are significant.

Since the correlation for both Blob Operation and Internal Duplication are small,

we perform an odds-ratio test to understand which of these smells are more likely to be

involved in a Semantic merge conflict, as compared to entities that do not have these

smells, but were involved in a conflict. Since we are performing two comparisons, we

have to adjust the significance value to adjust for multiple hypothesis testing. Like in the
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previous sections, we performed a Bonferroni correction, which gives us significance value

of α=0.0025 to test at.

TABLE 2.9: Smell Categories for Semantic Conflicts (significance level α=0.0031)

Smell Correlation p-value

Blob Operation ** 0.05 0.0030
Internal Duplication ** 0.07 0.0002
Message Chain 0.01 0.4970
Refused Parent Bequest 0.03 0.0492
SAP Breaker -0.02 0.2652
Schizophrenic Class -0.03 0.0832
Shotgun Surgery -0.008 0.6597
Sibling Duplication 0.031 0.1029
Tradition Breaker 0.018 0.3291
Unnecessary Coupling -0.01 0.5681
Data Class -0.02 0.1524
Data Clumps 0.030 0.1103
Distorted Hierarchy 0.034 0.0670
Feature Envy 0.009 0.6206
God Class 0.050 0.0072

We performed an odds ratio test (Fisher’s exact test) for the Blob Operations and

find that they are 1.7 times more likely to be involved in a Semantic merge conflict (odds

ratio: 1.77, p=0.0024). Blob Operations are methods that are very complex and have

many responsibilities. Therefore, any change to the method will likely impact multiple

lines, which may intersect with logical changes made by another developer to the same

method. This explains the high likelihood of their involvement in Non-Semantic conflicts.

For Internal Duplication, we found that they are 1.55 times more likely to be involved

in merge conflict (odds ratio: 1.55, p=0.0001.) We attribute this to the fact that, because

of duplication, a change has to be repeated in multiple locations. This increases the

chances of developers making overlapping changes.

2.4.3 RQ3: Do code smells associated with merge conflicts affect the quality
of the resulting code?

We aim to model the effects of code smells on the bugginess of a line of code involved

in a merge conflict. As defect prediction literature has already identified several factors
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(e.g., the size of the module under investigation [59], number of committers [?], centrality

of files [37]) that affect bugginess, we include them in our model also. Table 2.10 lists

the final set of factors that we use, which include metrics that are code-based (F1, F2),

change-related (F5-F8), author-related (F3, F4), and code-smells. We compute whether

a developer is core or non-core based on our methodology in Section 2.3.7.

To answer our third research question, we build two Generalized Linear Models

(GLM). The first contains the number of code smells as a factor, and the second does not.

The first (Poisson regression) model is built with a log linking function as explained in

Section 2.3.7. After filtering the factors with VIF ≤ 5, we had a set of 8 factors out of

43 factors. All eight factors were statistically significant (see Table 2.10). The predicted

value is the total number of bug fixes occurring on a line of code that was involved in a

merge conflict. Note that smell count was a significant factor in the model (p<0.05), with

an estimate of 0.427.

The McFadden Adjusted R2 [79] of this model is 0.47. We calculated McFadden’s

Adjusted R2 as a quality indicator of the model because there is no direct equivalent of

R2 metric for Poisson regression. The ordinary least square (OLS) regression approach to

goodness-of-fit does not apply for Poisson regression. Moreover, adjusted R2 values like

McFadden’s cannot be interpreted as one would interpret OLS R2 values. McFadden’s

Adjusted R2 values tend to be considerably lower than those of the R2. Values of 0.2 to

0.4 represent an excellent fit [79]

To understand the impact that code smells have, we built the same model by re-

moving the total number of smells as a factor. This decreased the adjusted-R2 from 0.47

to 0.44. We can therefore conclude that code smells have a significant impact on the final

quality of the code. Since McFadden’s adjusted R2 penalizes a model for including too

many predictors, had the code smells not mattered, removing it could have increased the

adjusted-R2 instead of reducing it.
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TABLE 2.10: Poisson regression model predicting bug-fix occurrence on Lines of Code
involved in a merge conflict

Factor# Factor Estimate p-value

F1 In Deps 3.195 <0.0001
F2 Out Deps -0.053 <0.0001
F3 Noncore author -3.799 <0.0001
F4 No. Authors 0.129 <0.0001
F5 No. Classes -0.373 <0.0001
F6 No. Methods 0.244 <0.0001
F7 AST diff 0.001 <0.0001
F8 LOC diff 0.00002571 <0.0001
F9 Number of Smells 0.427 <0.0001

2.5 Discussion

To the best of our knowledge, we are the first to investigate the association of code

smells with that of merge conflicts, and their impact on the bugginess of the merged results

(line of code). We find that program elements that are involved in merge conflicts contain,

on average, 3 times more code smells than program elements that are not involved in a

merge conflict.

Not all code smells are equally correlated to merge conflicts. 12 out of the 16 code

smells that co-occur with conflicts are significant associated with merge conflicts. The

top five code smells from this list are: God class, Message Chain, Internal Duplication,

Distorted Hierarchy and Refused Parent Bequest. Interestingly, the only (significant) code

smells associated with Semantic conflicts are Blob Operation and Internal Duplication.

All the above code smells arise when developers do not fully exploit the advantages

of object-oriented design, leading to high coupling, duplication, or large containers. These

factors lay the groundwork for parallel conflicting efforts, where developers step on each

other’s toes. For example, the Blob Operation is a large and complex method that grows

over time becoming hard to maintain. In such a situation, multiple developers may need

to make changes to the same method and, therefore, collide when merging. Similarly,
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Internal Duplication arises when code is duplicated, which bloats methods and makes it

hard to ensure all clones evolve in the same way. In such a situation, developers might

have to “touch” multiple parts of the method to ensure all clones are being updated,

causing situations of parallel, conflicting edits.

It is interesting to observe that Semantic merge conflicts are associated with smells

at the method level. For example, the Blob Operation and Internal Duplication smells are

1.77 times and 1.55 times, respectively, more likely to be present in a semantic conflict as

compared to a non-semantic conflict. This indicates that bloated methods or duplicated

code in methods increase the spread of the change a developer is likely to make, which in

turn increases the likelihood of two or more changes conflicting during a merge. Prior work

has associated code duplication with negative consequences such as increased maintenance

cost [131, 94] and faults [18, 87]. Our findings indicate that duplication also negatively

impacts the collaborative workflow by making it difficult to merge changes.

It is worth noting that while smells, such as God Class have a significant correlation

with overall merge conflicts, they do not have a significant correlation with semantic merge

conflicts. We posit that a large container (class) with cohesive logical units (methods) can

lead to multiple developers making parallel changes that are localized to specific areas

(methods) and do not intersect. In these cases, when changes are merged conflicts can

arise because of the movement of code or formatting changes (non-semantic conflicts).

The same reasoning is also applicable for Distorted Hierarchy, Refused Parent Bequest and

Message Chain. In contrast, as discussed earlier method-level smells seem are correlated

with semantic conflicts.

To the best of our knowledge, ours is the first empirical study to investigate the

effects of merge conflicts and code smells on the bugginess of code. We found that the

presence of code smells on the lines of code involved in a merge conflict has a significant

impact on its bugginess (see Table 2.10). Including code smells as a factor increases the
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McFadden’s adjusted R2 value from 0.44 to 0.47. Since McFadden’s adjusted R2 penalizes

a model for including too many predictors, an increase in the value signifies that adding

code smells as a factor was valuable. We find that factors such as incoming-dependencies

and the number of code smells have the highest correlation estimate, indicating their

importance to the model.

We find that some factors, such as non-core author, number of classes, and out-

ward dependencies have a negative effect on bugginess. This is counter intuitive. We had

assumed that changes from multiple non-core authors are more likely to be buggy. We

believe that the following reasons lead to this surprising outcome. It might be the case

that non-core contributors are more thorough and put more effort towards submitting code

that is less bug prone. Or it might be the process via which newcomers’ contributions are

accepted. For example, core developers might pay more attention to changes coming from

non-core contributors. Further empirical studies on the differences in review processes for

core vs. non-core developers will be interesting. We also found that the number of classes

involved in a conflict has a negative correlation to its bugginess. This might be because

changes that involve multiple classes are more likely to be refactoring or licensing changes,

and therefore, less likely to introduce bugs.

Implications: Our findings have a number of implications for software practition-

ers, tool builders and researchers.

Code smells have been historically associated with maintenance issues, which are

known to be a problem in the long term. However, developers are often unaware of code

smells. Yamashita et al. found that a considerable portion (32%) of developers did not

know about code smells [154]. Our findings shed a different light on the impact of code

smells and on the importance of addressing them. Our results show that code smells are

an immediate concern for day-to-day activity such as merging changes.

Merge conflicts delay the project by requiring an examination of the conflict, and
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disrupting the developers’ workflow. Anecdotal evidence shows that developers hate re-

solving conflicts. Developers are known to follow informal processes (e.g., check in partial

code, email the team about impending changes etc.) or rush to commit their work in an

effort to avoid having to resolve conflicts [50]. A developer may also choose to delay the

incorporation of others’ work, fearing that a conflict may be hard to resolve [50]. Such

processes can have a detrimental effect on team productivity and morale. This situation

can only become worse as the project evolves on two fronts. First, the number of code

smells is likely to increase as the project ages [14]. Second, there is a likelihood of in-

crease in merge conflicts as more developers start to contribute. Our results indicate that

practitioners should pay more attention to code smells, as it will not only make the code

quality better, but will also help them minimize the number of merge conflicts they need

to resolve.

Practitioners, when investigating the root cause of a merge conflict can start by

looking for smelly program elements in the code. Moreover, since changes that involve

entities containing code smells are more likely to lead to semantic merge conflicts, integra-

tors (or code reviewers) should pay particular attention to and attempt to remove code

smells when reviewing commits. Practitioners should also pay attention to “good” soft-

ware engineering processes when they deal with smelly program elements. For example,

when changes are being made to smelly parts of the code base developers should merge

more frequently and perform more thorough code reviews.

Our results show that code smells are a good predictor of merge conflict and the

level of difficulty of that conflict. Therefore, tool builders can use the information of

incidence of code smells to support distributed work – either in predicting likelihood of

conflicts or their difficulty. Code smells can also be used as a factor to schedule tasks (e.g.,

program elements that have code smells should not be edited in parallel) or assign tasks

(e.g., developers with higher experience should work on smelly program elements).
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Our results have implications for researchers. Since code smells together with merge

conflicts can predict bugginess, researchers can use this information in bug prediction

models to increase their effectiveness. To the best of our knowledge, no merge conflict

prediction tool exists. Our results show that code smells have a strong association with

merge conflicts, therefore, researchers can use this information to predict impending merge

conflicts. Our results also have implications in testing. For example, increasing the test

coverage of smelly lines that were involved in a merge conflict can be used as an objec-

tive/fitness function in the field of search based software engineering.

2.6 Threats to Validity

Our research findings may be subject to the concerns that we list below. We have

taken all possible steps to neutralize the impacts of these possible threats, but some

couldn’t be mitigated and it’s possible that our mitigation strategies may not have been

effective.

Bias due to sampling: Our samples have been from a single source - Github. This

may be a source of bias, and our findings may be limited to open source programs from

Github and not generalizable to commercial programs. However, the threat is minimal

since we analyze a large number of projects spanning eight different domains.

Bias due to tools used: The smell detection tool we used uses static code analysis

to identify smells and research shows that code smells that are “intrinsically historical”

such as Divergent Change, Shotgun Surgery and Parallel Inheritance are difficult to detect

by just exploiting static source code analysis [122]. So the number occurrence of such

“intrinsically historical” smells should be different when historical information based smell

detection technique is used.

Secondly, we used the Gumtree algorithm [?] for tracking program elements across



32

commits. However, the algorithm used is unable to track program elements across renames

or movement to another folder. Further, refactoring that involves modification of scope,

such as moving the code out of the current compilation unit also causes the algorithm to

lose track of the program element after refactoring.

Bias Due to using classifiers: We use machine learning to group conflicts into the

two categories, and to determine whether a commit was a bug-fix. As with any classifier,

we have some mislabeling. While our results do not require those results to be anywhere

near perfect, this threat is low as our classifiers have good F1-measure and high precision.

Regarding the bug-fix classifier, our recall and precision measures are on par with

past work [?]. Since our analysis relies on relative count of bug fixes, as long as we do not

systematically undercount bug fixes, our results are valid.

Finally, we have assumed that all bugs were found and fixed by developers when we

use it as a metric of bugginess of merged lines of code. This may not always be true, and

hence our results are conservative.

2.7 Conclusions

In this paper, we study the history of 143 open source projects, from which we

extract 6,979 merge conflicts to see if there is any correlation between code smells and

merge conflicts. We found that entities involved in merge conflicts contain almost 3 times

more code smells than non-conflicting entities.

To have a better understanding of the effect of code smells on merge conflicts, we

categorized conflicts into semantic conflicts – changes to the AST and hard to resolve – and

non-semantic – changes that are cosmetic. We found two method-level code smells (Blob

Operation and Internal Duplication) to be significantly correlated with semantic conflicts.

More specifically, methods that contained the Blob Operation and Internal Duplication
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smells were more likely to be involved in a semantic merge conflict, by 1.77 times and

1.55 times respectively. We also found that code smells have a significant impact on the

final quality of the code. Count of code smells was a significant factor when we modeled

the bugginess of lines of code involved in a merge conflict.

Our results show that code smells, thought to be a maintenance issue and often

neglected by practitioners, have an immediate impact in how distributed development is

managed. Their presence is not only associated with difficult merge conflicts (semantic),

but also with the likely-hood of bugs getting introduced in the code base.
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3.1 Introduction

Modern software development effort is, more often than not, a team effort. The

complexity of software projects, such as the Linux Kernel has grown exponentially over

the past years, and the Kernel now stands at over 21 million lines of code [44]. Software

of such complexity requires a large development team to develop and maintain; last year

alone more than 1,500 people made over 70,000 individual code contributions to the Linux

Kernel [44]. While most software systems are simpler than the Linux Kernel, the kind

of distributed and collaborative work model which powers this project is broadly repre-

sentative of how much of today’s software development is done, especially in open source

projects.

Modern Version Control Systems (VCS) have made parallel development easier by

streamlining and coordinating code management and merging. For example, in Git, cre-

ating parallel branches or cloning an entire project can be done through a single com-

mand. This ability to create private development lines makes it easy for developers to

experiment without impacting or being impacted by others’ work. However, as is well

known, isolation of private development lines can cause problems when changes are syn-

chronized [31, 135, 50].

Merge conflicts can occur when developers make concurrent changes to the same

code artifacts. The changes are generally authored by two different developers, but merge
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conflicts can also happen between the edits of one developer. While automatic merge tools

help, manual intervention is required when changes overlap. Resolving merge conflicts,

even easy ones, can disrupt the flow of programing, forcing developers to shift their focus

on the resolution process. Other times, a conflict resolution requires a deeper understand-

ing of the program’s structure and goals. For example, when a function’s signature or

parameters are changed, a developer first needs to understand the rationale behind the

change, and any dependencies, before she can resolve the conflict. Prior work has found

that in complex merges, developers may not have the expertise or knowledge to make the

right decisions [118, 46], which might degrade the quality of the merged code.

Another problem associated with merge conflicts is that they often take the de-

veloper outside of their development process. For instance, a developer may follow an

established process of peer review of code submissions, but the merged code maybe “cob-

bled” together. This could lead to an increased likelihood of bugs slipping through, as

could an incomplete understanding of the nature of changes and dependencies.

Prior research has shown that merging long lived branches can lead to merge con-

flicts (when the VCS fails to merge the two branches due to current edits to the same lines,

also called direct conflicts), or indirect conflicts (integration failures where the merged code

does not compile, or tests fail) [125, 26, 142]. While others have shown that merge conflict

occurrence is frequent [125], what is not known is whether the code emerging from the

resolution of merge conflicts is sub-par, whether different types of merge conflicts affect

the resultant code quality differently, and whether there are any differences in the merged

code created by experienced developers’ as compared to novices.

Currently, therefore, there is an important gap in our understanding of the nature

of merge conflicts and the results of their resolution. Closing these gaps can help us not

just build better tools and processes to help developers, but also develop a more nuanced

and in depth understanding of the risks and problems associated with merge conflicts.
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The goal of this paper is to characterize the different types of merge conflicts and

identify any effects they have on the quality of the resulting code. We ask the following

research questions:

• RQ1: What are the most common types of merge conflicts?

• RQ2: How likely is code resulting from a merge conflict to contain bugs?

• RQ3: What are the factors that affect the quality of the code resulting from a merge

conflict resolution?

• RQ4: What are the resolution strategies used by developers when resolving merge

conflicts?

To answer these questions, we analyzed a broad sample of 143 open source projects.

From these projects, we collected 556,911 commits, 36,122 of which were merge commits.

19.32% of these merges, in turn, resulted in conflicts.

Our research identified six types of direct merge conflicts. Some types of conflicts

require resolution that is trivial (e.g. formatting differences), while others are challenging

(e.g. those that make changes to the underlying Abstract Syntax Tree). About 60% of

conflict resolutions in our dataset involve changes to the Abstract Syntax Tree (AST)

that are entangled (henceforth called Semantic merge conflicts). We also found that

code associated with a merge conflict is twice as likely to have a bug, and code associated

with Semantic merge conflicts are 26 times more likely to have a bug compared to code

associated with other conflicts.

In summary, our contributions are:

• A taxonomy of merge conflicts;

• Empirical results that show that direct merge conflicts are indicative of changes that

are bug-prone;
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• Identification of factors that are associated with direct merge conflicts that are bug-

prone;

• Identification of most commonly used resolution strategies.

3.2 Related Work

3.2.1 Merge conflicts

Researchers have looked at strategies for merging code, problems associated with

them, and how to proactively avoid them in order to support collaborative development

efforts. Mens et al. [110] present a survey on the state of the art of software merging. Their

survey goes into depth regarding merge strategies and ways to reduce conflicts. However,

it does not provide evidence of the kinds of problems merge conflicts present.

Empircal Studies: Merge conflicts are known to be costly [72, 125, 50]. They delay

the project, requiring an examination of the conflict, and developing a consensus solu-

tion. Several empirical studies have detailed how merge conflicts are a problem, and the

strategies that developers follow to evade having to resolve conflicts. For example, Perry

et al. [125] found that increased parallel work, in addition to causing conflicts, can also

lead to an increase in software defects. Developers are known to follow informal processes

(e.g., check in partial code, email the team about impending changes) to avoid having to

resolve conflicts when committing changes [25], or rush to commit their work in an effort

to avoid being the developer who has to resolve the conflicts [50]. A developer may also

choose to delay the incorporation of others’ work, fearing that a conflict may be hard

to resolve [50]. Such processes can have a detrimental effect on team productivity and

morale. Our work is the first to investigate the root cause of a merge conflict, and to try

and quantify how problematic merge conflicts are for developers.

Proactive conflict detection: There have been a number of papers that focus on
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developing tools to proactively detect or avoid merge conflicts. Sarma et al. [135] and

Ripley et al. [130] presented Palant́ır, a tool that helps make developers aware of changes

to each other’s workspaces. Similarly, Biehl et al. [24] presented FASTDash, and de Silva et

al. [48] introduced Lighthouse, which also try to foster awareness among developers. Kasi

et al. [90] presented Cassandra, a tool that schedules tasks in order to minimize the chance

of conflicts occurring. Brun et al. [31, 32] developed Crystal, which identifies two different

types of merges conflicts: “textual,” which are detected by the version control system’s

merge tool, and “higher level conflicts,” which are not detected until a build or test fails.

The tool merges changes in a shadow repository as they are committed in order to catch

these types of conflict as early as possible. Similarly, Guimarães et al. [74] introduced a

technique to continuously merge changes in the IDE in order to detect merge conflicts

as soon as possible. Servant et al. [139] presented a tool and visualization that enable

developers to understand the impact of their changes, which can then prevent indirect

conflicts. Dewan et al. [55] presented a software development model aimed at reducing

conflicts by notifying developers when they work on the same file, and allowing them

to collaborate when resolving conflicts. While proactive detection tools help developers

prevent merge conflicts, it is not always possible (e.g. important security fixes cannot be

delayed to avoid such a conflict). Our work aims to bring understanding of the merge

conflicts that do occur.

Merge help: Researchers have investigated techniques to manage merging of changes,

in order to more efficiently resolve conflicts, either in an automated way, or by preserving

and presenting useful context for the developer trying to resolve the conflict. Apel et

al. [16, 15] and Cavalcanti et al. [39] presented a new merging technique, semistructured

merge, which considers the structure of the code being merged. Lippe et al. [101] presented

Operation Based Merging, which, when merging, considers the changes performed, not

just the end result. However, McKee et al. [108] have shown that developers do not
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trust tools if they don’t understand how they work, and they prefer to resolve merge

conflicts manually. Our work can help researches focus on the merge conflicts that are

more “painful” for developers.

Conflict categorization: Finally, researchers have looked at ways of categorizing

conflicts. Sarma et al. [135] categorized conflicts as direct conflicts, when parallel files

have been changed and indirect conflicts, when parallel changes to dependent files cause a

conflict. Similarly, Brun et al. [31], distinguish between first level (textual) conflicts from

second level (build and test failure) conflicts. Buckley et al. [33] proposed a taxonomy of

changes based on properties like time of change, change history, artifact granularity etc.

Their taxonomy deals with software changes in general or conflicts at a coarser level. We

are intersted in creating a taxonomy that provides finer details about merge conflicts and

the impact of their resolution. Finally, Accioly et al. [10] and Menezes [109] present a

classification that considers the types of changes that generate the conflict. Our approach

is different, as we are using a human-centered approach at identifying the root cause of a

conflict. We are the first to propose and validate a categorization that looks at the root

cause of a merge conflict.

3.2.2 Measuring software quality

One goal of our research is measuring the impact that conflicts have on software

quality. Various measures of software quality have been proposed. Boehm et al. [28],

and Gorton et al. [70], to mention a few, have explored measures including completeness,

usability, testability, maintainability, reliability, efficiency, etc. Some of these metrics

are difficult to measure, especially in the absence of requirement documents or other

supporting information. Researchers have also used code smells as a measurement of

software quality [103, 104], though smells are often focused on future maintainability

issues.
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3.2.3 Tracking code changes and conflicts

Our analysis requires mining the history of each line of code to determine if and

when it was involved in a merge conflict, a software patch/upgrade, or a bug fix. Re-

searchers have proposed various algorithms for tracking individual lines of code across

versions of software. Canfora et al. [35] proposed an algorithm that uses Levenstein edit

distance to compute similarity of lines, matching “chunks” of changed code. Zimmerman

et al. [159] proposed annotation graphs which work at the region level for tracking lines.

Godfrey et al. [69] described “origin analysis,” a technique for tracking entities across mul-

tiple revisions of a code base by storing inexpensively computed and easily comparable

“fingerprints” of interesting software entities in each revision of a file. These fingerprints

can then be used to identify areas of the code that are likely to match before applying more

expensive techniques to track code entities. Kim et al. [93] propose a seminal algorithm,

SZZ, for tracking the origin of lines across changes. Finally, Falleri et al. [61] propose the

GumTree algorithm for tracking changes at an AST level. This is the approach that we

chose for our experiments.

3.3 Methodology

Our goal here is to quantify and categorize merge conflicts across a wide set of

representative open source projects, and the fault-proneness of the resulting code (whether

these changes were associated with bug fixes or other improvements). Additionally, we

want to collect relevant metrics about the projects themselves, and the contributors (such

as whether these contributors were part of the core development team or intermittent/new

developers).

To achieve these goals, we first select a project sampling strategy that allows us

to gather data from projects that are representative of the kind of development practice
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FIGURE 3.1: An overview of our data collection and analysis process. Tools used are
listed using a monospaced typeface in the lower part of the boxes. JDT stands for Java

Development Toolkit3

we are interested in. We then track the lines of code through versions and code merges

in order to study how the code evolved, and which lines were associated with conflicts,

updates, and bug fixes. Next, we determine the nature of code updates (e.g. was this

a bug fix, or a new feature, etc.). In order to do this, we manually classify a subset of

the commits and trained an automated classifier to classify the rest. Finally, we use the

data to build a model to predict the total number of bug fixes that would occur on a

conflicting line. The following subsections describe each of these steps in detail, and the

overall picture is presented in Figure 3.1.

We also released the tooling we used for analyzing the projects. The tool for

identifying merge conflicts is available here: https://github.com/caiusb/conflict-

detector. The tool for collecting the metrics is available here: https://github.com/

caiusb/MergeConflictAnalysis. Finally, our statement tracker is available here: https:

//github.com/caiusb/statement-history.

3https://www.eclipse.org/jdt/
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3.3.1 Project Sampling

We collected projects from GitHub [6] for our empirical evaluation. Our goal was

to ensure that the projects chosen offered a reasonably unbiased representation of modern

software practices. We also tried to reduce the number of variables that could contribute

to random noise during evaluation. With these goals in mind, we decided to focus on Java

projects using the popular Maven build system [4]. This decision was influenced by the

fact that Java is one of the most popular languages (according to the number of projects

hosted on GitHub [6]), and the availability of analysis tools.

We started by randomly selecting 900 projects, the first to show up when using

the GitHub search mechanism. From these, we eliminated aggregate projects (which

could skew our results), leaving 500 projects. After eliminating projects in which we

could not compile more than half of the merge commits (for reasons such as unavailable

dependencies, or compilation errors due to syntax or bad configurations), 312 projects

remained. Finally, we eliminated projects that our AST difference tool [61] could not

handle. This left us with a total of 200 projects.

We followed the guidelines presented by Kalliamvakou et al. [89] for mining Git

repositories. We removed projects that were too small, that is, having fewer than 10

files, or fewer than 500 lines of code, or those projects that were not active in the past

6 months. We also removed projects that had no merge conflicts. This was essential

because there is a long tail of small and short-lived projects on GitHub, which include

trial projects, projects with single author or no parallel development. Since these projects

do not represent the kinds of development efforts we are interested in, we remove them

from consideration. The thresholds chosen are based on similar studies [12].

Our final data set contained 143 projects across different domains. As a check on

our sampling, we manually categorized the domains of our projects by looking at their

project description, and using the categories used by Souza et al. [52]. Table 3.1 presents
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TABLE 3.1: Distribution of projects by domain

Domain Percentage

Development 61.98%
System Administration 12.66%
Communications 6.42%
Business & Enterprise 8.10%
Home & Education 3.11%
Security & Utilities 2.61%
Games 3.08%
Audio & Video 2.04%

the summary of the domains of the projects.

Next, we discuss the individual project characteristics. Table 3.2 provides a sum-

mary of features and other descriptive information of the projects in our study.

TABLE 3.2: Project characteristics

Dimension Max Min Average Std. dev.

LOC 542,571 751 75,795.04 105,280.1
Duration (Days) 6,386 42 1,674.54 1,112.11
# of Developers 105 4 72.76 83.19
Total Commits 30,519 16 3,894.48 5,070.73
Total Merges 4,916 1 252.60 522.73
Total Conflicts 227 1 25.86 39.49

The line counts (lines of code in the project) were taken from the version of the code

that was in the repository on March 1st, 2016, and the duration is the number of days

from the date of the first commits to March 1st, 20164. The number of developers is the

number of unique individuals that contributed at least once over the life of the project.

Individuals were identified by the name in the “Author” field in each Git commit. The

standard deviations are high, which suggest that our sample contains a diverse set of

projects. This acts in favor of making our findings more generalizable.

From our sample of 143 projects we extracted 556,911 commits. This included

36,122 merge commits. Our data shows a high standard deviation in the total number

4Some projects may have migrated to GitHub from other platforms, so this is a lower-bound figure
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of commits as well as merges. Therefore, we further investigate the distribution of merge

commits (see Figure 3.2). From the figure we can see that merge commits are not scarce,

as projects have an average of 252.6 merge commits. Out of all the merges, we identified

6,979 (19.32%) conflicts, as described in the next section.

FIGURE 3.2: Distribution of merge commits. The vertical line represents the mean
(252.60)

3.3.2 Conflict Identification

Since Git does not explicitly record information about merge conflicts, we recreate

each merge in the corpus to determine if a conflict had occurred. We use Git’s default

algorithm, the recursive merge strategy, as this is likely to be most commonly used by the

average Git project.

This also allows us to identify each conflicting commit and the affected file. More

specifically, we used the git merge command that automatically merges the commits,

and flags merges with overlapping changes as merge conflicts. The distribution of merge

conflicts is shown in Figure 3.3. We see that projects experienced an average of 25 merge

conflicts, or 19.32% of all merges. Merge conflicts, therefore, are a common part of the
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developer experience (in our dataset).

FIGURE 3.3: Distribution of merge conflicts. The vertical line represents the mean
(25.86)

We then collect statistics regarding each file involved in a conflict, including files

that have conflict and those that merged cleanly. We track the size of the changes being

merged, the difference between the two branches (in terms of LOC, AST difference, and

the number of methods and classes involved). We track the types of AST nodes involved

(e.g., BinaryExpression, MethodInvocation, ExpressionStatement etc.) There were 81

node types in total. We use the Gumtree algorithm [61] to determine the AST differences.

We also collect meta information about the merge, for example, if the change was merged

into the master branch or not. Finally, we track the number of authors involved in the

merge.

In this the paper, we only analyze merge conflicts, that are detected by Git, and we

do not consider indirect conflicts, that are not detected by Git, but are noticeable because

of build or test failures.
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TABLE 3.3: Conflict categories. A semantic change is a change that affects the program
logic.

Category Definition C.i Example

Semantic Two conflicting semantic
changes, where two different
changes in the program logic
overlap

NTii https://github.com/

zanata/zanata-server/

commit/49fda3

Disjoint Semantically unrelated
changes that overlap tex-
tually

NTii https://github.com/

jdktomcat/cat/commit/

0cbbd0
Delete A conflict in which one of the

branches deletes code modified
on the other branch

NTii https://github.com/

osmandapp/Osmand/commit/

defe2e
Formatting Conflicting changes due to for-

matting (whitespace changes)
Tiii https://github.com/

scudderfish/MSLoggerBase/

commit/b495d3
Comments Conflicting changes are lim-

ited to comments only
Tiii https://github.com/

scudderfish/MSLoggerBase/

commit/b495d3
Other Not belonging to any of the

above
Tiii

i Complexity ii Non-trivial iii Trivial

3.3.3 Conflict Types

To understand the root cause for each conflict we manually investigated and clas-

sified 606 randomly sampled commits. We classify each conflict based on the type of

changes causing the merge conflict (e.g., whitespace or comment added vs. variable name

changed). When classifying a conflict into a category, we chose the most “severe” cat-

egory. As an example, if a merge contained conflicts in both comments (Formatting)

and program logic (Semantic), we classify it as Semantic. We do so since we want

to identify those conflicts that require the most developer reasoning (at least for some

part of the conflict). The first two authors independently coded 300 of these commits us-

ing qualitative thematic coding [47]. Using Cohen’s Kappa, they achieved an inter-rater

agreement of 0.84 on 20% of the data. The first author then classified the remaining



47

306 commits. The codes and their definitions are given in Table 3.3. Detailed examples

for each category can be found in the companion website [1]. Next, we will present an

example of each category of Non-trivial merge conflicts.

Listing 1: An example of a Semantic merge conflict. Taken from the Catdroid project,

commit c03c155

90 <<<<<<< HEAD
91 File projectXMLFile = new File(Utils.buildPath(Utils.

buildProjectPath(projectName), Consts.PROJECTCODE_NAME));
92 SimpleDateFormat dateFormat = new SimpleDateFormat("dd.MM.

yyyy HH:mm");
93 Date projectLastModificationDate = new Date(projectXMLFile.

lastModified ());
94 holder.dateChanged.setText(dateFormat.format(

projectLastModificationDate));
95 =======
96 //set last changed:
97 SimpleDateFormat sdf = new SimpleDateFormat("dd.MM.yy HH:mm")

;
98 Date resultDate = new Date(projectData.lastChanged);
99 holder.dateChanged.setText(sdf.format(resultDate));

100 >>>>>>> 20 b7c5e

Listing 1 presents a Semantic conflict from our manually classified corpus. In this

example, we have two refactorings (renaming resultDate to projectLastModificationDate

and sdf to dateFormat) as well as introducing and using a new variable (projectXMLFile).

The developer resolving this merge conflict would have to untangle the changes, in order to

keep the correct refactorings and make sure that the new variable is used where required.

Listing 2: Example of a Disjoint merge conflict. Taken from the Catdroid project,

commit 3ba5186

74 <<<<<<< HEAD
75 R.string.formula_editor_function_round ,
76 R.string.formula_editor_function_true ,
77 R.string.formula_editor_function_false };
78 =======
79 R.string.formula_editor_function_round ,
80 R.string.formula_editor_function_mod };
81 >>>>>>> f665d49

5https://github.com/Catrobat/Catroid/commit/c03c15
6https://github.com/Catrobat/Catroid/commit/3ba518
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Listing 2 presents an example of a Disjoint merge conflict. In this example, two

developers added different values to an existing enum. In this case, the resolution is

straight forward, as the correct solution is having all the enum values added on both

branches.

Listing 3: Git’s output when encountering a Delete merge conflict. Taken from the

WordPress-Android project, commit 5fe68c7

CONFLICT (modify/delete): src/org/wordpress/android/ui/
notifications/BigBadgeFragment.java deleted in HEAD and
modified in fff496c. Version fff496c of src/org/wordpress/
android/ui/notifications/BigBadge

Finally, Listing 3 shows the Git’s output when a file is deleted on one branch, and

modified in the other. In this case, the developers is left with the modified file. It’s up to

them to find out why was the file deleted. It is also up to them to understand the changes

that were made, and decide if to keep the file, or if the changes need to be reimplemented

elsewhere, if the code was reorganized as part of a larger refactoring.

3.3.4 Conflict Type Classification

We use this set of 606 (10%) commits as training data for a machine learning classi-

fier to use on the full set of merge commits. Each class is classified using an Adaptive Boost

(AdaBoost) ensemble classifier, where we use 100 Decision Trees as weak classifiers. We

choose AdaBoost as it had the highest performance (precision and recall) when compared

with Support Vector machine (SVM) for our dataset. This was not surprising as ensem-

ble of classifiers have shown significantly improved performance in other domains such as

prediction [144]. We categorize all of the 6,979 conflicting commits using AdaBoost.

Performance of any prediction is dependent on the features used. Therefore, we

wanted to use a comprehensive set of features. We performed a literature search, and we

used factors from these 2 papers [110, 16] to decide on the final set. We also included

7https://github.com/wordpress-mobile/WordPress-Android/commit/5fe68c
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TABLE 3.4: Features used to train the classifier

Feature Description

AST Sizei The total number of AST Nodes involved in a merge conflict
LOC Sizei The sum of the LOC of the files involved in a conflict
AST diff size between the
branches

The difference in number of AST nodes involved in the con-
flict

AST diff branch-solutioni The difference in AST nodes between a branch and the merge
conflict resolution solution

LOC diff size between the
branches

The total number of LOC involved in the conflict

LOC diff branch-solutioni The difference in AST nodes between a branch and the merge
conflict resolution solution

AST Size of the solution The total number of nodes for the solved merge conflict (only
the files affected by a conflict)

LOC Size of the solution The LOC size of the solved merge conflict (only the files af-
fected by a conflict)

# authors The number of authors whose changes are involved in a merge
conflict

Merged in master “True” if the branch was merged in the master branch,
“False” otherwise (was merged in a different branch)

Branch timei The timestamp of the last commit on each branch
Solution time The timestamp of the merge conflict resolution commit
# methods The total number of methods involved in the merge conflict
# classes The total number of classes involved in a merge conflict
# statements The total number of statements involved in a merge conflict.
AST Nodes in conflict The total number of AST nodes involved in the merge con-

flict.
Is AST Conflict “True” if the merge conflict is at the AST level.

i Collected for both branches
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features that are known to influence the comprehension of a program, such as changes size

and the spread of the change (number of affected program elements).

We gathered these factors from either the Git repository, or we derived them by

analyzing the source code, when the factors are related to the process and code metrics

(characterized in numerical form)

To train the classifier we use a set of 24 features, including: the total size of the

versions involved in a conflict, the size of the conflicting area, the number of statements,

methods and classes involved in the conflict. The complete list can be found in Table 3.4

and in our companion website [1]. The features were chosen based on the existing lit-

erature. We also considered factors that are known to influence the comprehension of a

program, as well as the authors’ experience.

Our goal was to achieve high precision and recall. We use 10 fold cross-validation to

test the performance of our classifier, measured using the F1-score. The F1-score considers

precision and recall by taking their harmonic mean. The average F1-score of the 10 rounds

for the conflict type classifier is 0.64, the precision is high at 0.75. The F1-score is defined

as the harmonic mean between the precision and recall scores.

We present the confusion matrix in Figure 3.4. The diagonal elements represent

the number of points for which the predicted label is equal to the true label, while off-

diagonal elements are those that are mislabeled by the classifier. While our classifier

has decent results, it’s worth noting that there are some mislabeled commits. This is

happening because for some categories (e.g. Comments) less training data was available.

We discuss this further in the Threats to Validity (Section 4.5).

3.3.5 Tracking statements

We needed to track statements that were involved in merge conflicts in order to

track the eventual outcome of merge conflicts. We decided to use GumTree [61] for our

analysis, as it allows us to track elements at an AST level. This way we can track only
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Delete 4 4 0 1 0 3

Formatting 13 0 3 2 30 2

Other 27 4 4 0 17 18

Semantic 69 0 9 5 219 23

Disjoint 41 2 5 7 68 14

FIGURE 3.4: The confusion matrix for our classifier

FIGURE 3.5: An overview of the tracking algorithm. The lines marked with ∆ represent
the conflicting region of a merge. For each line we identify the AST nodes, and track all
the modifications (at AST level) forward in time. We stop when we hit a commit that

was classified as Other.

the elements that we are interested in (statements), and ignore other changes that do not

effectively change the code. The GumTree algorithm works by determining if any AST

node was changed, or had any children added, deleted or modified. The algorithm maps

the correspondence between nodes in two different trees, which allows it to accurately track

the history of the program elements. This algorithm has unique advantages over other

line tracking algorithms, such as SZZ [93]. These advantages include: ignoring whitespace

changes, tracking a node even if its position in the file changes (e.g. because lines have

been added or deleted before the node of interest), and tracking nodes across refactorings,

as long as the node stays within the same file. Using this technique, we can track a node
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even when it has been moved, for example, because of an extract method refactoring.

For each statement of interest, we use the version of the source code at the point

preceding the merge conflict as the starting point. We use it to identify the AST nodes

corresponding to the line of interest. We consider the code as changed if the AST node was

changed, or had children that were added, deleted or modified. An example of a change

to AST node is: changing int x = 0; to int y = 0;. This modifies the AST node

(SimpleName: x in the first snippet) by changing its name property (x to y). Similarly,

the change x = x +1; to x = 1; modifies the node because it modifies it’s subtree. The

algorithm maps the correspondence between nodes in two different trees, which allows us

to track the history of any statement.

AST differencing has three advantages over simple line based differencing. The first

is that it ignores whitespace changes. Second, we are able to track a node even if its

position in the file changes (e.g. lines are added or deleted before the node of interest).

Third, we are able to track nodes across refactorings, as long as the node stays within the

same file.

For each node involved in a conflict, we identified all future commits that touched

the file containing that node. To do so, we track the Java statement that corresponds to

the (changed) AST node. Note that in Java, there might be multiple statements in the

same line (e.g., a large if-else statement block), therefore, it is important to track only

the statements that corresponds to the changed AST node.

We then repeated the same analysis for statements that were not involved in a

conflict to determine if there was any difference between lines associated with a merge

conflict and those which were not.

3.3.6 Commit Classification

In order to answer research questions 2 and 3 we needed to group commits into one of

two categories: (1) bug-fixes and improvements (modifying existing code), and (2) commits
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that introduced new functionality (adding new code) or were related to documentation,

test code etc.

We investigate bug-fixes as it gives an objective measure for the definition of quality

for open source projects, which often lack detailed requirements, roadmaps, or even test

harnesses. The more bug fixes and changes a line of code faces over a period of time, the

more one can argue that that line of code was incomplete or poorly implemented [13]. As

this measure works at the individual line level, just like merge conflicts, we decided to use

it as our measure of code quality.

It is not always trivial to determine which category a commit falls under, especially

when larger projects see a large amount of activity. Manual classification of commits was

therefore not an option, and we decided to use machine learning techniques.

In order to build a classifier, we randomly selected and manually labeled a set

of 1,500 commits. Two evaluators worked independently to classify the commits. Their

datasets had a 33% overlap, which we used to calculate the inter-rater reliability. This gave

us a Cohen’s Kappa of 0.90. In our training dataset, the portion of bug-fixes was 46.30%,

with 53.70% of the commits assigned to the “Other” category. Some keywords indicating

bug-fixes or improvements were “Fix,” “Bug,” “Resolves,” “Cleanup,” “Optimize,” and,

“Simplify,” together with their derivatives. Anything that did not fit into this pattern

was marked as “Other.”

Not all bug-fixing commits include these keywords or a direct reference to an issue-

id; commit messages are written by the initial contributor, and there are few guidelines.

A similar observation was made by Bird et al. [26], who performed an empirical study

showing that bias could be introduced due to missing linkages between commits and bugs.

We trained a Naive-Bayes (NB) classifier and a Support Vector Machine (SVM)

using the SciKit toolset [124]. The frequencies of the words in the commit message were

used as the predictors. We used 10% of the data to train the classifier. We applied
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the classifiers to the training data with 10-fold cross-validation. As before, we used the

F1-score to measure and compare the performance of the models. The NB classifier

outperformed the SVM. We used the NB classifier to classify the full set of 16,571 commits.

Table 3.5 has the quality indicator characteristics of the NB classifier. Tian et

al. [147], suggest that for keyword-based classification the F1-score is usually around 0.55,

which happened in our case. While our classifier is far from perfect, it is comparable to

“good” classifiers in the literature. Further, we believe it is unlikely for the biases to have

a confounding effect on our analysis. Since our analysis only relies on relative counts of

bug-fixes for statements, as long as we do not systematically undercount bug-fixes for only

some statements, our results should be valid. A manual inspection of the classification

results did not show any evidence of systemic over- or under-counting.

TABLE 3.5: Details of the bugfix (Naive Bayes) classifier.

Precision Recall F1-score

Bug-fix 0.63 0.43 0.51
Other 0.74 0.86 0.80

For each line of code resulting from a merge conflict, we count the number of future

commits in which it appears, as long as those commits are identified as bug-fixes. We

stop tracking when we encounter a commit that is classified as “Other” (see Figure 3.5,

where we count commits C1 and C2, but not Cn). Our reasoning is that once an element

has seen a change that is not a bug-fix, it is no longer fair to assume that subsequent bug

fixes are associated with the original merge conflict.

3.3.7 Core authors identification

We categorize developers as core or non-core based on the amount of their contri-

butions. This is because, typically, a small core team is responsible for more than 80% of

contributions to open source projects [114]. Therefore, those developers who are in the

core are likely those with higher experience. We calculate this by first splitting the project
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history into quarters. We then identify those developers who had the most contributions

in a quarter. We do so because in open source there is high developer turnover, or de-

velopers become inactive for periods of time, therefore, it is better to gauge experience

in shorter time periods. We identify developers as core contributors by evaluating if they

are in the top 20% (in terms of number of commits) of the developers in that quarter.

We note that some developers started as non-core and transitioned to core, whereas

some went from active to inactive. Therefore, an author can switch between core and

non-core across quarters, based on their levels of contribution, and vice-versa.

3.3.8 Regression analysis

In order to answer our third research question, we needed to build a regression

model to identify the factors that impact the number of bug fixes occurring on lines of

code resulting from merge conflicts. We use Generalized Linear Regression [41]. In our

data, the dependent variable (count of bug fixes occurring on conflict lines) follows a

Poisson distribution. Therefore, we use a Poisson regression model with a log linking

function.

We include the following factors in our regression model: file dependencies, source

code and change metrics, and author related metrics. For calculating the dependencies

of the files that are involved in a conflict, we use Understand [8] to count the number

of references to- and from other files. We collect this information as a proxy for the

importance of the file. We assume that the more a file is referenced by other files, the

more central that file is, and hence more important. Any change in these central files can

increase the chance of a change being required in other files.

For each conflict commit, we record the information about the size of the change –

the difference between the two merged branches, in terms of LOC, AST difference, and

the number of methods and classes being affected. Our intuition is that larger changes

should have a higher chance of causing a conflict. We also calculate the number of authors
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who made commits to the branches that were merged.

After collecting these metrics, we checked for multi-collinearity using the Variance

Inflation Factor (VIF) of each predictor in our model [41]. VIF describes the level of

multicollinearity (correlation between predictors). A VIF score between 1 and 5 indicates

moderate correlation with other factors, so we selected the predictors with VIF score

threshold of 5. This step was necessary since the presence of highly correlated factors

forces the estimated regression coefficient of one variable to depend on other predictor

variables that are included in the model.

3.3.9 Identifying resolution strategies

Not all conflicts are created equal, and their resolution is dependent on the nature

of the changes being merged. A developer can choose different strategies for resolving

conflicts. The easiest strategy is to simply select one of the branches that is being merged.

While this might work for trivial conflicts (such as Formatting), it might not work for

more complex conflicts. In some cases, it might be possible to mix and match the changes

by interleaving existing code from the two branches. However, in more complicated cases,

a developer might need to adapt the code from both branches to successfully merge the

changes.

In order to determine the strategy that developers had used, we look at the existing

solutions to merge conflicts. For each conflict we perform a line difference between the

solution and the tips of the two branches being merged. Lines that were different from

one branch, but not the other are considered to have been selected by the developer for

integration. Lines that are different from both branches implies that they have been

changed in order to be successfully integrated. Based on these observations we identified

the following three resolution strategies:

1. Select one: The solution is the same as one of the branches (the difference to one

of the branches is 0);



57

2. Interleave: The solutions contains lines from both the branches; none of the lines

were changed and no new lines were added (we can match each line in the solution

to a line in one of the branches);

3. Adapted: Existing lines were changed or/and new lines were added.

3.4 Results

In the following section, we present our results structured around our four research

questions.

3.4.1 Merge Conflict Characteristics (RQ1)

In our dataset, 19.32% of merges resulted in merge conflicts (6,979 merge conflicts

in 36,122 merge commits). This means that almost 1 in 5 merges resulted in conflicts that

required human intervention. Our results are similar to those found by Brun at al. [?]

and Sarma et al. [135]. A merge conflict not only means that developers have to stop

their work, reason about the conflicting changes, and figure out the best way to integrate

the changes. It also creates a situation where it is possible for bugs to slip through if

developers do not refactor and run test cases, or have their proposed (adapted) code peer

reviewed.

Types of merge conflicts

To further understand how different types of merge conflicts can impact the source

code, we examine the type of changes leading to a merge conflict (see Section 3.2 for

discussion of categories and methodology). Our results are presented in Table 3.6, where

we present both the results of the automated classifier, as well as the results from our

manual classification of the 606 merge conflicts. The distributions of the automatically

classified merge conflict types match the distributions of our manual labeling (training
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data), showing the efficacy of the automated classifier.

TABLE 3.6: Merge conflict types and their frequency of occurrence

Category
# of

conflicts
% of total
(classifier)

% of total
(training) ∆

Semantic 4,150 59.46% 50.86% +8.6%
Disjoint 1,014 14.53% 22.74% -8.21%
Delete 86 1.24% 2.52% -1.28%
Formatting 1,620 23.21% 11.84% +11.35%
Comments 42 0.60% 2.21% -1.61%
Other 67 0.96% 3.31% -2.40%

The resolution of the first two types of merge conflicts (Semantic and Disjoint)

requires understanding the program logic of the changes in order to successfully resolve

the merge conflict. We find that the most common type of merge conflict is Semantic

(59.46% of all merge conflicts) where changes are entangled. 14.53% of merge conflicts

emerge from concurrent changes to program logic that do not interact with each other

and can co-exist (Disjoint). This means that in the vast majority (at least 75.23% of

cases, for the Semantic, Disjoint and Delete categories) of merge conflicts, a developer

needs to reflect on the program logic when integrating changes, and that for the majority

of merge conflicts (at least 59.46% of cases, which represents the Semantic category),

new code has to be written.

Merge conflicts due to lines of code being deleted are easier to merge, but still

require the developer to reason about the deletion. Delete conflicts constituted a small

percentage (1.24%) of all merge conflicts.

Although resolving merge conflicts due to Formatting changes (23.21% of all

merge conflicts) or Comments (0.60% of all merge conflicts) require human intervention,

they are easier and less risky to resolve since they do not affect the programs’ functionality.

It is interesting to note that merge conflicts caused by comments are the rarest of all —

alluding to the fact that inline comments are rarely changed (if added at all), and most

likely only updated when the code is changed.
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Change types

We first examine the kinds of changes that are associated with merge conflicts to

understand the types of tasks that are most associated with merge conflicts. We were

curious to see if merge conflicts arose from behaviors like multiple developers fixing the

same bug. We found this not to be the case. The majority of the changes involved in

merge conflicts were non-bug fix changes (see Figure 3.6).

FIGURE 3.6: Frequency of change type by merge conflict type

Merge Conflict characteristics

Next we characterize merge conflicts based on the type and size of changes, the

number and type of developers making the changes (Table 3.7). For the former, we

determine whether the merger conflicts are non-trivial, that is, if they were associated

with changes to the AST. The AST difference captures the impact of changes and is a

good estimator of the amount of information a developer must process when resolving

merge conflicts. The average size of a Java file is 4,845 AST Nodes, and the maximum is

168,790 AST Nodes. We find that Delete merge conflicts are associated with the highest



60

AST difference (median of 1,662 nodes, which is 34% of the average file). We believe that

a majority of these changes are associated with refactoring, a result of “chunks of code”

that are moved, sometimes across files. Since these (cross-file) moves get counted twice

(once for the removal, and once for the addition), it inflates the AST node numbers and

LOC differences.

TABLE 3.7: Characteristics of merges conflicts

Conflict
Category

Median AST diff
(% of median)

Median
LOC diff

Median #
authors

Overall core
developers %

Semantic 387 (8%) 2,351.0 4 89.08%
Disjoint 88 (2%) 1,037.0 3 89.65%
Delete 1,662 (34%) 16,102.5 2 86.01%
Formatting 0 (0%) 62.0 2 91.67%
Comments 19 (< 1%) 427.5 3 80.00%
Other 6 (< 1%) 238.0 4 86.49%

Semantic merge conflicts also led to large AST differences (median 387 nodes).

This is intuitive because larger changes have a higher chance of having semantic interac-

tions. In our data set, independent (Disjoint) changes (affecting a median of 88 AST

nodes) are not as complex as those in the prior two categories. As expected Formatting

merge conflicts have a median AST difference of 0. Comments merge conflicts also have

AST node differences (median of 19). This is because Eclipse’s JDT has AST nodes for

comments. The LOC differences mirror the AST differences.

The median number of authors involved in conflicting commits ranged from 2 to 4.

Note that Semantic merge conflicts included changes from a median of four developers,

which means that the developer resolving the merge conflict has to reason about changes

made by multiple developers — not an easy task. Even Disjoint merge conflicts included

changes from a median of three developers.

Next, we look at the experience level of developers resolving merge conflicts. We

classify developers as core or non-core based on their level of contributions as described

in Section 3.3.8. We find that core members are involved in the majority of merge conflict
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resolutions across all merge conflict types. This is intuitive, as core developers have more

knowledge of the system and are therefore the best suited for solving merge conflicts.

However, a number of merge conflicts are solved by non-core developers. This can still

present problems, as they have less experience and insight into the code, which may make

it difficult for them to correctly resolve merge conflicts.

In summary, we identified 6 types of merge conflicts, and the vast majority (75.20%)

of merge conflicts impact the program logic, and therefore, require reasoning about the

goals of the changes and the best way to integrate them.

3.4.2 Merge Conflicts and Code Quality (RQ2)

To answer RQ2 we examine whether the changes involved in merge conflicts are

more likely to contain bugs than non-conflicting merges. We perform this analysis at the

statement level; for every line of code involved in a merge we examine whether it was

involved in a future bug fix based on the approach described in Sections 3.3.6 and 3.3.8.

We use Fisher’s Exact Test to compare the number of bug-fix commit between conflicting

and non-conflicting merges. The results show that commits that are involved in a merge

conflict are 2.38 times more likely to contain a (future) bug fix (Fisher’s Exact Test,

odds ratio = 2.38, p < 0.05).

Next we determine whether there are differences between different types of merge

conflicts, as not all merge conflicts take the same effort to resolve. For our analysis we

cluster merge conflicts into two groups:

• Non-trivial merge conflicts include the Semantic, Disjoint and Delete cat-

egories. Developers have to determine how to resolve the logical changes in these

merge conflicts.

• Trivial merge conflicts include the other categories: Formatting, Comments

and Other. Since these merge conflicts do not involve semantic changes, a trivial
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merge resolution, such as choosing one version over the other, is feasible.

As before, we use Fisher’s Exact Test to examine the difference between Trivial

and Non-trivial merge conflicts and future bug fixes. We find that Non-trivial merge

conflicts are 26.81 times more likely to need a bug fixing commit compared to lines in-

volved in Trivial merge conflicts (Fisher’s Exact Test, odds ratio = 26.81, p < 0.05.)

This confirms that merge conflicts in the Non-trivial category are more challenging for

developers to resolve, and might either introduce bugs or are associated with changes that

themselves are likely to cause bugs.

We also ran Fisher’s Exact Test and found a statistical difference between Seman-

tic and Disjoint merge conflicts (odds ratio = 0.47, p < 0.05.) This means that merge

conflicts arising from disjoint (independent) changes are half as likely to be buggy com-

pared to Semantic merge conflicts. There was no statistical difference between Delete

and Semantic or Delete and Disjoint merge conflicts. There was no significant dif-

ference between the merge conflicts types in the Trivial group. As we perform repeated

tests, we use the Bonferroni adjustment for the α values.

In summary, we find that code that was involved in a merge conflict has a higher

likelihood of being involved with a future bug. While some bugs are injected in the merge

resolution, others were likely already there (e.g., changes in Disjoint merge conflicts). In

either case, a closer scrutiny of code involved in a merge conflict is warranted.

3.4.3 Factors Correlated with Bugs (RQ3)

As reported in the defect prediction literature, there are several factors that correlate

with the bugginess of code. A critical factor is the size of the module under investigation

[59]. Therefore, we posit that the size of a change in a merge should be a predictor of

bug-proneness. Another factor that has been associated with defects is the number of

committers — the “too many cooks” [151] phenomena. Finally, it has been noted that

changes made to central files have a higher likelihood of reducing software quality [37].
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Therefore, we model the total number of bug fixes to conflicting commits by the size of

the change, file dependencies, number of authors, and their experience level.

We build a Poisson regression model with a log linking function. After filtering the

factors with V IF ≤ 5, we had a set of eight factors (Table 3.8) out of 43 total; all eight

factors were significant at p < 0.05. These factors are: number of references to other files,

number of references to the file involved in the merge, number of non-core contributor

authors involved in the merge, number of authors involved in the merge, number of AST

nodes changed, number of classes involved in the merge, number of methods involved in

the merge and the number of LOCs changed.

TABLE 3.8: Poisson regression model predicting bug-fix occurrence

Factor Coefficients

# of References to other files 0.08408
# of References to the file involved in merge -0.03501
# of Non-core contributor -1.898
# of authors w/ changes involved in the merge -0.5634
# of classes involved in the conflict8 -0.1636
# of methods involved in the conflict9 0.3756
# of AST nodes changed 0.0007278
# of LOC changes 0.00003705

The McFadden Pseudo R-squared [79] of our model is 0.36. We calculated McFad-

den’s Pseudo R-squared as a quality indicator of the model because there is no direct

equivalent of R-squared for Poisson regression. The ordinary least square (OLS) regres-

sion approach to goodness-of-fit does not apply for Poisson regression. Moreover, pseudo

R-squared values like McFadden’s cannot be interpreted as one would interpret OLS R-

squared values. McFadden’s Pseudo R-squared values tend to be considerably lower than

those of the R-squared. Values of 0.2 to 0.4 represent an excellent fit [79].

The effect of outward dependencies (number of external references from the file in-

volved in a merge conflict) is positive, therefore changes that refer to external file (class)

elements are more likely to contain bugs. We found a negative effect of inward depen-
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dencies (number of references to the file involved in merge). We also found a negative

coefficient for the size of the change (number of classes involved in the merge conflict), the

number of authors involved in the change and the number of non-core contributor. The

correlation between the number of authors with changes involved in a merge conflict and

the number of future bugfixes is also negative.

Finally, in line with previous research [113, 92, 151] we find a positive effect of

number of methods involved in the merge conflict, number of LOC changes and number

of AST nodes changed on future bug fixing commit counts.

3.4.4 Resolution Strategies (RQ4)

FIGURE 3.7: Resolution strategy based on commit type.

In this section, we analyze the strategies developers use when resolving merge con-

flicts. Overall, we find that Adapted was the most commonly used resolution strategy

(60.82%), compared to Interleave (26.38%) and Select one (12.80%). Figure 3.7

presents the results detailed by merge conflict type. In the case of Semantic merge con-

flicts, we observe that about 80% of the resolutions modify the existing code (Adapted)
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in order to successfully resolve the merge conflict. As expected, merge conflicts that have

a semantic nature require a bit of “coercion” for them to work together correctly.

Another category where a high percentage of resolutions use the Adapted strategy

is Comments. We hypothesize that this is because merge conflicts in comments are

actually conflicting edits in two English texts, which require changing the text to make

the sentence structure coherent when integrating the changes.

We see that in Formatting merge conflicts, the vast majority (over 80%) involve

a resolution by either Select one or by Interleave strategies. The small amount of

Adapted strategy is probably because developers were reformatting the code to integrate

the changes.

An interesting result is that more than half of the merge conflicts that are generated

by Disjoint changes still require the developers to use Adapted in order to resolve it.

Our hypothesis that while the changes themselves might be disjoint, simply interleaving

them might not be sufficient.

We now investigate who resolves merge conflicts. We found that the vast majority of

merge conflicts are resolved by one of the authors that contributed to one of the branches,

as shown in Figure 3.8. Core developers solve most of them (89.47%), while non-core

developers solve only a small fraction (10.53%). We also saw that about 2% of the merge

conflicts were solved by Third Party developers (who have not contributed to any of the

branches). We also analyze whether these third party contributors were core or non-core

developers. We present the data in Table 3.9. For the Semantic category, over 80% of

the third party developers resolving a merge conflict were core contributors. We postulate

that these developers are “integrators” for the project. Only a very small fraction of the

merge conflicts are resolved by a third party developer who is a non-core developer. The

same trend can be seen for the other merge categories as well.

In summary, we find that Adapted is the most used strategy for resolving merge
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FIGURE 3.8: Developer category for each merge conflict category

TABLE 3.9: Distribution of developer types resolving merge conflicts

Category
Third party One of the authors

Core Non-core Core Non-core

Semantic 80.97% 19.03% 90.19% 9.80%
Disjoint 75.00% 25.00% 91.38% 8.62%
Delete 91.67% 8.33% 91.57 8.33 %
Formatting 81.25 % 18.75% 86.61% 13.39%
Comments 85.71% 14.29% 76.92% 23.08%
Other 76.06 % 23.94 % 88.47% 11.53%

conflicts. When dealing with Non-trivial merge conflicts the percentage increases sig-

nificantly, possibly indicating the higher difficulty these merge conflicts pose.

3.5 Discussion

Merge conflicts are far from a solved problem. Despite advances in VCS tools and

prescribed development practices, such as frequent commits and review workflows, merge
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conflicts still occur frequently. We found that 1 out of every 5 merge commits in our

dataset resulted in a merge conflict that required human intervention. Additionally, lines

of code involved in a merge conflicts were 2x more likely to be buggy. Our taxonomy of

merge conflicts shows that in 60% of cases, merge conflicts arise because of interacting,

semantic changes. Furthermore, lines of code involved in these types of merge conflicts

are 26x more likely to be buggy than in other types of merge conflicts.

Our results have implications for developers, tool builders, and researchers. Devel-

opers should focus their testing and code reviews on code resulting from merge conflicts,

as they are more likely to be buggy. This is even more critical when the merge involves

more changes, or when the conflicting changes span multiple methods.

Tool builders can use our merge conflict taxonomy and conflict (commit) classifier

to automatically identify and flag lines of code resulting from merge conflicts, so that

these receive higher test coverage or increased code review. Similarly, tools can use the

information of the files, methods, lines of code involved in a merge conflict to prioritize

testing, especially in the context of swarm testing [73, 80].

Our results indicate that 24% of merge conflicts (Formatting, Comments) are

trivial to resolve. However, they still require human intervention, which interrupts devel-

opers’ workflow. Tool builders should aim to better support automated code integration

for such cases, so that it doesn’t require human intervention. For example, Git, has the

option of performing a merge that ignores whitespace changes. However, this is not a

default option. Research has shown [85, 86, 145, 133] that users, and developers [123],

are affected by default and anchoring biases. This indicates a preference of using the

default options, instead of changing them. Perhaps the description of the option to ignore

whitespace while merging should be more prominent, or enabled by default. As we see

that a fairly large number of merge conflicts (over 20%) are caused by formatting changes,

enabling the option by default could significantly reduce the number of merge conflicts
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developers face.

Ours is the first empirical study to investigate the effects of merge conflicts on the

bugginess of code. Some of our results are counterintuitive and present opportunity for

new lines of research. For example, we observe that an increased number of non-core

developers is correlated to fewer bug-fixes in the future. We posit that this happens

because when non-core developers introduce changes, core developers review them when

merging, “eliminating” some of the bugs in the process. We have observed this behavior

while analyzing the merge conflict resolution strategies in Section 3.4.4 where we see that

most merges are solved by core developers.

As shown in Section 3.4.3, we found a negative effect of inward dependencies (num-

ber of references to the file involved in merge.) We posit that changes to central files might

have to pass more tests or that bugs are identified earlier because more people depend on

them.

In the case of the number of authors with changes involved in the merge conflict, we

speculate that we are seeing the effect of Linus’ law, which states that “many eyes make

all bugs shallow” [129]. We plan to perform further research to investigate how many

of the bug fixes that were found after the merge conflict existed before the merge (were

dormant), and how many were introduced as part of the merge conflict resolution. The

negative correlation between number of classes and bugginess can be attributed to the

fact that changes that span multiple classes are more likely to be refactorings, compared

to other changes.

When looking at the resolution strategies, we find that developers primarily use

Adapted as the resolution strategy when dealing with Semantic merge conflicts. Lines

involved in Semantic merge conflicts are also most likely to be involved in future bug

fixes.

We hypothesize that changes introduced by Adapted are not subject to the same
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level of review as regular commits. Therefore, there is a chance that the Adapted merge

resolution strategy itself could introduce new bugs. Also, they might contain preexisting

bugs. Further studies are needed to answer these questions.

We also saw that non-core developers who were not involved in the development of

either of the branches (3rd party) resolve merge conflicts. This is counterintuitive, as non-

core developers are less likely to have an in depth understanding of the code base and they

are more likely to introduce bugs. On top of that, not being involved in the development

of either branch makes their Adapted resolution strategy bug prone. It might also be

the case that a developer is classified as non-core, but she might have localized experience.

Further investigation is needed to explore this.

We posit that because resolving merge conflicts take developers outside of the es-

tablished workflow, they may not adhere to the strict testing or reviewing process that

they would otherwise follow when making their original changes. Developers may pay

more attention to changes that include multiple authors, because of which lines of code

resulting from such merge resolution are negatively associated with bugginess. Further in-

vestigation of the review and testing processes that developers follow for merge resolution

is needed to validate this idea.

Our study has included a broad spectrum of projects from different domains. How-

ever, they are all open source. Commercial projects have different constraints, develop-

ment priorities, and practices. Future research comparing the differences between these

two types of development with respect to the types of merge conflicts, merge resolution

processes, and bugginess of resulting code needs to be performed.
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3.6 Threats to Validity

Our empirical study, like any, has threats to validity. Where possible, we have taken

steps to ameliorate their impact.

Identifying merges: Not all projects use git merge to integrate their change.

Some use rebase or squash for that purpose. It is currently impossible to tell, from the

public history alone, when rebasing or squashing occurs, as all we see is a clean, linear

history. This presents the threat that we might under-sample the total number of merge

conflicts that occur in practice. However, we believe this thread has minimal impacts on

our results. This just reduces the number of merge conflicts available for analysis, which

is compensated by the increased corpus size.

Sampling Bias: All our projects are sampled from a single source — GitHub [6],

so our findings may be limited to open source programs. To ensure representativeness

of our samples, we used search results from the Github repository of Java projects that

use the Maven build system. So, our sample of programs could be biased by skew in

the projects returned by Github. Github’s selection mechanisms favoring projects based

on some unknown criteria may be another source of error. While this makes our results

less generalizable, the threat is minimal since we analyze a large number of projects: 500

projects were extracted, from which 143 were selected spanning eight different domains.

Fitness of our approach: We use Gumtree algorithm [?] to track program el-

ements across commits when calculating AST differences. Gumtree, however, does not

track program elements across renames or moves to other folders. Despite this drawback,

Gumtree is a robust algorithm used to track refactoring and moves within the same file,

and is better than line differencing tools.

Machine learning classifiers: We use machine learning to group merger conflicts

into the six categories, and to determine whether a commit was a bug-fix. As with any
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classifier, we may have some mislabeling. This threat is low as our classifiers have good

F1-measure and high precision. The confusion matrix (Figure 3) shows that the highest

misclassification is likely to happen when Semantic merge conflicts are identified as Dis-

joint merge conflicts. This does not affect our findings for RQ2 (effect of merge conflict

on code quality) since both (Semantic and Disjoint) merge conflict types are in the

same Non-trivial category. Also, our misclassification is asymmetrical because we are

classifying more Trivial (Comments) merge conflicts as Non-trivial (Semantic, Dis-

joint) than vice versa. So this makes our results conservative, because any misclassified

Non-trivial commits reduces the future bug-fix count used to answer RQ2. Regarding

the bug-fix classifier, our recall and precision measures are on par with past work [?].

Since our analysis relies on relative count of bug fixes, as long as we do not systematically

undercount bug fixes, our results are valid.

Bug-fix commit categorization: It’s not always possible to untangle bug fixing

changes from other kinds (refactorings, formatting, even adding new features). The same

is true of other commit types, where bug fixes might have “crept in.” As mention before,

as long as we don’s systematically over- or under-count the number of bug-fixing commits,

our results should still be valid.

Finally, we have assumed that all bugs were found and fixed by developers when we

use it as a metric of bugginess of merged lines of code. This may not always be true, and

hence our results are conservative.

3.7 Conclusions

Our empirical study spanning 143 open source projects found that merge conflicts

occur frequently. Moreover, code involved in a conflict had a 2x higher chance of be-

ing buggy. To create a better understanding of the merge conflicts, their frequency, and
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impact, we create a taxonomy of conflicts, which includes six categories of conflicts de-

pending on the type of resolution effort needed. We found about 74% of merge conflicts

include interacting semantic changes (to the underlying AST). Moreover, code resulting

from these conflicts was 26x times more likely to be buggy as compared to that from other

conflicts. They are also more likely to be solved using an Adapted strategy, compared

to other types of conflicts.

Our analysis of the factors associated with merge conflicts show that conflicts that

involved files with high (outward) dependencies were correlated with more bugs. However,

inward dependencies, number of non-core contributors, and the number of authors were

associated with fewer bugs.

We conjecture that the merge resolution process disrupts the normal review and

testing workflow, which might be the reason why lines involved in a merge conflict have

a higher likelihood of being buggy. We plan to perform more research to investigate

the review and testing workflow around a merge resolution. We also plan to study the

frequency and distribution of bugs that are actually introduced as part of the resolution

process as opposed to bugs that were dormant and remaining in the original code.
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4 STRUGGLES IN SENSEMAKING: A FIELD STUDY OF MERGE
CONFLICT RESOLUTION BEHAVIOR
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4.1 Introduction

Version control systems are an essential component of collaborative software de-

velopment. In Git and other version control systems, developers work on their changes

in private workspaces, periodically synchronizing their changes with others by merging

into the main development line. While many commits merge cleanly, parallel changes can

overlap, resulting in merge conflicts. Prior work has found merge conflicts to regularly

occur in development projects from 8% to 47% of the time [90, 12, 157, 31].

When merge conflicts occur, they disrupt the development process, especially when

changes diverge significantly. This is because developers have to pause what they were

doing to resolve merge conflicts, which (1) displaces them from their workflow; (2) sad-

dles them with the potentially high-complexity cognitive task of understanding another

developer’s changes; and, (3) forces them into making code changes that may introduce

bugs, which can be especially true for novice developers [50, 118]. Poorly-performed merge

conflict resolutions have been known to cause integration errors [27], workflow disruptions,

and jeopardize project efficiency and timelines [60].

Resolving merge conflicts is nontrivial. Practitioners are aware of the resolution

“pains” and have developed workarounds to avoid having to resolve conflicts; e.g. send-

ing out emails to the rest of the team, performing partial commits, or racing to finish

changes [50, 36]. Unfortunately, these practices can cause changes to diverge even more,
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further complicating merge conflict resolutions [31].

Existing tool support for resolving merge conflicts is still in its infancy. While

support exists for visualizing the code under conflict, tools fail to communicate the causes,

side-effects, and implications of conflicting code. This becomes critical when trying to

merge large, tangled change sets. In such situations, developers are tasked with making

sense of and seeing the connections between fragments of information pulled from a variety

of different information sources such as parts of the code base, commit messages, issue

trackers, etc.

Previous work has examined awareness and prediction of merge conflicts [135, 31,

74], proposed tools for resolving merge conflicts [119, 110], and has examined the difficulties

inherent in merge conflict resolution processes [108, 117]. However, there is no body of

knowledge about the in-situ steps developers take when resolving merge conflicts. We do

not have an understanding of what kinds of information developers use, in what order,

how they use the information from different sources, or where they struggle. Without

answers to these questions, tools builders might be working under wrong assumptions,

and researchers might miss opportunities for improving the state of the art.

To answer the above key questions, we conducted an in-situ observation of profes-

sional software developers resolving merge conflicts in their production code. The lead

researcher colocated at the team’s workplace during working hours, and when a developer

faced a merge conflict they called the researcher to observe the resolution. We asked par-

ticipants to use the think aloud protocol to capture their thoughts and reasoning [132].

We audio and screen recorded the resolution process (when participants consented) of 10

conflict resolutions resulting in 96 minutes of recordings.

In this paper, we take a first step towards understanding the merge conflict resolu-

tion process through a qualitative, empirical study using the lens of sensemaking. While

this study only reports on the resolution of 10 merge conflicts, these observations are rich
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in detail and provide us some initial data about patterns and challenges. Further research

will be needed to address the generalizability question.

We structured our study around the following research questions:

• RQ1: What types of information do software developers seek when resolving merge

conflicts, and how?

• RQ2: How do they synthesize information to resolve a merge conflict?

4.2 Background

In prior work, we broadly identified five stages developers go through while managing

and resolving merge conflicts: (1) development : writing code, (2) awareness: becoming

aware that a merge conflict has occurred, (3) planning : deciding how to resolve the conflict,

(4) resolution resolving the conflict, and (5) evaluation: checking whether the code is still

correct after the resolution [117]. The context of our present work is within the third

through fifth stages of this model: after the developer has detected the merge conflict.

Because our objective with this work was to examine developer merge conflict reso-

lution processes in detail, we selected a more complex model as the starting point for our

analyses: Pirolli and Card’s sensemaking model [126], presented in Figure 4.1. Sensemak-

ing has been used to understand a number of software engineering tasks. For example,

Grigoreanu et al. [71] successfully applied sensemaking to investigating end users’ successes

and failures at debugging spreadsheets. We focus our results on two internal loops of the

sensemaking model: the foraging loop (the External Data Sources to the Evidence

File stages) and the sensemaking loop (the Hypothesis Testing to the Reevalua-

tion) stages. Within our context, the foraging loop focuses on how developers search,

collect, filter and store information during merge conflict resolutions and the sensemaking

loop focuses on how developers organize information they found and how they use it to
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FIGURE 4.1: The sensemaking loop, as introduced by Pirolli and Card [126]

build a final solution.

4.3 Methodology

4.3.1 Participants and Data Collection

We performed an observational study of developers while they were resolving merge

conflicts during their regular daily workflow. We chose this form of study because it

allowed us to gather ground data about activities developers perform during the merge

conflict resolution, on code they were familiar with (or had at least worked with). Because

of the exploratory nature of this work, we wanted to gather large amounts of qualitative

data to help us understand the “why” behind the actions we would observe. To that end,

we asked participants to follow the think-aloud protocol by verbalizing their thoughts and
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FIGURE 4.2: Example of a merge conflict (P5-C1) in the Visual Studio IDE. The IDE
presents a text only view of the code, and it’s the developers job to find why the changes

conflict, as well as how to resolve it.

actions [82].

We collected the data through a university outsourcing development lab that worked

on both commercial and Open-Source Projects. The team we studied consisted of approx-

imately 20 part- and full-time developers, 12 of which signed up for our study. Part-time

developers were generally students in the junior year, or higher, while the full-time devel-

opers were professionals, some with over 10 years of experience. The teams worked in an

open-office layout on 3 development projects. The study focused on one of the projects,

which was being developed for a state agency. We collected data across 17 days, from

April 24, 2018 to May 11, 2018.

The study was designed to minimize disruption to the developers, and to maximize

the external validity of the data we gathered. Before the study started, the researchers

introduced themselves to the team and enrolled any developers who were willing to par-

ticipate in the study. Overall, we observed 10 merge conflicts resolved by 7 participants.
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The details of the participants can be seen in Table 4.1.

The first author was present in the office during working hours (9AM to 5PM,

Monday through Friday). Although some developers worked outside those hours, the

majority were in the office during this time frame. When a merge conflict occurred, the

participant called the researcher to their workstation. The researcher then started a screen

recording session via Google Hangouts and used a GoPro HERO5 Session to record the

participant, the screen, and participant’s verbalizations.

TABLE 4.1: Participant Demographics

Ptc.i Gender Exp.ii Language(s)iii
Proj.

Exp.iv

P1 M
7y

0m
C, C++, C#, JavaScript, Python 0y 6m

P2 M
2y

6m
C#, Python 0y 2m

P3 M
4y

0m
C++, C#, JavaScript 0y 1m

P4 M
10y
0m

C# 10y 0m

P5 W
4y

0m
C#, Python, SQL 0y 3m

P6 M
15y
7m

C#, .NET 5y 2m

P7 M
15y
0m

C#, .NET 10y 0m

i Ptc. = Participant ii Exp. = Years (y)/months (m) of software development experience iii Preferred
programming language(s) iv Proj. Exp. = Years (y)/months (m) of experience contributing to the

current project

During the study, we collected over 96 minutes of screen recording and verbaliza-

tions. We transcribed the audio of each merge conflict resolution and split each transcrip-

tion into 10 second segments to prepare for qualitative coding.
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4.3.2 Analysis

We defined a codebook of 6 sensemaking steps, which we adapted from Grigore-

anu et al. [71]. As discussed in Section 4.2, they in turn adapted Pirolli and Card’s

Sensemaking framework [126] for end-user debugging. We first started with the 7 codes

proposed by Pirolli and Card [126], but we iteratively refined the codebook. Our final set

of sensemaking steps is presented in Table 4.2.

To help keep our data collection and analyses reliable and consistent, we omitted

the Hypothesis and Schema steps and replaced them with a proxy: the Hypothesis

Testing step. The Hypothesis Testing step is defined in terms of specific actions we

could observe participants performing. The reason we adapted the sensemaking model

in this way is because the Pirolli and Card steps are about what is going on inside the

person’s head, which can be difficult to detect. Even with a think-aloud protocol, we

felt unable to reliably extract the details of person’s conceptual schema, especially since

individuals may not themselves understand what internal frameworks they’re using to

process and organize information. Similarly, participants also do not always state the

hypotheses they’re making.

Once our codebook was established, we randomly sampled 20% of the data from the

10 merge conflict resolutions and two authors independently coded the sample, achieving

strong agreement in measured inter-rater reliability (IRR) (Cohen’s K=0.82) [42]. For

each segment, it was possible to assign multiple sensemaking steps if the Participant

transitioned between steps during the time window. Once reaching agreement for IRR,

the two authors divided the remaining data among themselves and individually coded

the rest of the dataset. In total, we assigned 868 codes from our codebook to the merge

conflict resolution screen recordings and verbalizations we gathered.

The first author also coded, by information source, the artifacts developers used dur-

ing merge conflict resolutions. Our information source definitions are listed in Table 4.3.
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As this was an objective step, we did not need to calculate the IRR.

TABLE 4.3: Information sources developers use.

Info. Source Description

Diff The diff view presenting the difference between two versions
of the same file (code artifact)

History The commit history of the project, or of an individual file
Code The source code itself.
Run The output from the running the application/project
Build/Tests Build and test output
Documentation Reading external documentation, in issue tracking system,

wikis etc.
Colleagues Asking colleagues for specific information regarding the

changes made, or the codebase

4.3.3 Pattern identification

We identified three types of patterns participants exhibited while resolving a merge

conflict: (1) Information source packings (i.e., number of different information sources

packed into a merge conflict resolution); (2) information usage patterns (i.e., path through

the information sources during the merge conflict resolution); (3) sensemaking patterns

(i.e., path through sensemaking steps during the merge conflict resolution).

To detect distinct information source packings, we used the k-means clustering algo-

rithm included as part of the standard unsupervised learning package in R [81]. We found

that a two-cluster partition resulted in the lowest variability within our dataset (within

cluster sum of squares (SS) by cluster: between SS
total SS = 32.26667

38.10000 = 84.7%). We identified 2

information source packings: Sparse and Dense (described in Section 4.4.2).

We used the same k–means clustering algorithm to detect patterns of information

usage (within cluster sum of squares (SS) by cluster: between SS
total SS = 19.91523

26.78481 = 74.4%). We

identified 2 information usage patterns: Sequential and Interleaved (described in

Section 4.4.2).

To detect patterns of sensemaking, we used a sliding time window to group steps
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(transitions from one sensemaking step to the next) together into five-item transactions.

We then looked for the most common transactions, and through this approach identified

four sensemaking patterns (two novel): StuckForaging, HuntingForData, Skip-

pingTheHypothesis, and QuickResolution (described in Section 4.4.3). To be con-

sidered a pattern, the same behavior had to appear five or more times, across at least two

participants.

Some participants had periods of stalling, when they did not seem to be progressing

through or transitioning between any of the sensemaking steps. While in some cases this

was caused by our participants reading or inspecting an information source, it was hard

to infer exactly which sensemaking processes were going on inside the participants’ minds.

To reduce noise in our data, we chose to eliminate any periods of “inactivity” from our

pattern analysis. A period of “inactivity” is defined as a participant staying in the same

sensemaking step for two or more consecutive steps.

4.4 Results

Here we first describe how participants’ conflict resolution behavior can be mapped

onto the sensemaking steps (Section 4.4.1). Using the sensemaking lens we then describe

how participants sought information (RQ1, Section 4.4.2), and how they synthesized it

(RQ2, Section 4.4.3).

4.4.1 Sensemaking steps in conflict resolution

We explain sensemaking terms that we use throughout the results section by using

P5’s conflict (P5-C1 in Figure 4.3) resolution behavior. The X-axis presents time (seconds)

and the Y-axis the sensemaking steps through which participants progressed. Line color

encodes the information sources they used (explained later in Table 4.3).

The first step in sensemaking is External Data Sources. In our context, this
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FIGURE 4.3: Activity Graph of Conflict P5-C1, showcasing a Sparse information
packing with a Sequential access pattern. The red arrows indicate where the

participant was having trouble finding the right information.

involves participants looking at a summary or overview of information sources to identify

one which can help them understand why the conflict occurred. P5 started by investigating

a summary of the commit history (green line) related to the merge conflict.

Next, they identified a commit from the conflict branch that was of interest. This

reflects the second sensemaking step (Shoebox), which involves deciding on which infor-

mation source (artifact) to examine first.

The next step is Evidence File, which involves delving deeper into an artifact

of interest (e.g., a file, commit message, diff region, etc.). In our example, P5 identified

the relevant commit then delved deeper into the changes introduced by that commit by

double-clicking the commit details in the IDE (moving to the Evidence File step). Once

the commit details were open, they examined two versions of the source code using the

code differences view (black dot in Figure 4.3).

The fourth sensemaking step is Hypothesis Testing. This step entails forming a

hypothesis about how to resolve the conflict, and then taking actions that show evidence

of that hypothesis (requiring evidence through action was a modification we made to

the Pirolli and Card sensemaking model [126], as thoughts were not always verbalized

making them difficult to observe). However, P5 skipped the Hypothesis Testing step

altogether, instead selecting a conflicting chunk to keep immediately after the Evidence

File step. They neither verbalized a specific hypothesis or resolution strategy, nor showed

evidence of forming a hypothesis. They largely selected their changes over the conflicting
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code as theirs was more recent. Therefore, we say that P5 moved directly from Evidence

File to Presentation, skipping Hypothesis Testing.

The Presentation step reflects that the participant had finished the resolution

(can be an entire conflict or a conflicting chunk) and the Reevaluation step includes

activities to verify the resolution by either building the code, executing test cases, running

the application or inspecting the output. Figure 4.3 reflects P5 considered the (chunk of

conflict) resolved when they accepted their change and moved to the next conflicting piece

of code. They did not perform any verification of their merged code in the entire resolution

time period. This was likely since P5 largely kept their changes, they might not have felt

it necessary to verify the merged code before committing it.

Using the sensemaking steps to represent conflict resolution behavior, allows us to

find common patterns and steps where participants struggled. For example, while P5’s

overall progression was smooth, there were couple times when their progress stalled. At

around 150 seconds, and after 200 seconds (as annotated by the red arrows in Figure 4.3),

P5 “stalled” in the Evidence File step. This was because they were having trouble

understanding the difference between the two versions of the code. It turned out to be a

subtle change of one parameter in a method signature that was difficult to spot because

the editor highlighted the whole line (instead of only the part that was different).

The next two subsections discusses in depth participants’ conflict resolution behav-

iors.

4.4.2 Seeking Information (RQ1)

A merge conflict resolution begins with understanding where the conflict is and why

it occurred. This requires some information foraging—needing to sift through mounds of

code and its history, while mentally keeping track of the conflicting pieces of code and

how they interact with each other as well as the rest of the codebase. To understand how

developers seek information at this stage, we analyzed the different information sources
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participants accessed and the patterns they used to access them.

How many information sources did participants use?

The number and type of information sources used in a merge conflict resolution

is important because different information sources have different structures and exist in

different places, requiring different approaches for accessing the information within. For

example, understanding the “history” of changes is different than understanding why a

“test” failed, which is very different from talking to a “colleague.” Table 4.3 provides

a list of information sources participants used. In addition to reviewing the conflicting

changes to better understand the context of the changes, participants accessed the code,

its history and outputs, external documentation, as well as talked with colleagues.

Consuming information from multiple sources requires increased cognitive effort,

as developers need to piece together the different pieces of information. Here, we only

distinguish between different types of information sources (i.e., even if a participant ac-

cessed 12 different code files, they are all combined to represent a single information source

type—“code”).

The number of information sources alone does not paint the full picture. What also

matters is how these information sources are accessed. For example, frequent switching

between multiple sources is challenging because every time developers switch between in-

formation sources they have to cognitively re-orient themselves, absorb information that’s

presented in a different way, perform window management, etc. Also, in complex conflict

resolutions there is a higher chance of making mistakes, increasing the likelihood of errors

creeping into the code.

Participants in our study used between 1 and 6 information sources with a max-

imum of 25 artifacts (see Table 4.4). The k-means clustering analysis (see Section 4.3)

classified the access to information sources into two distinct categories—Sparse (up to 3

information sources) and Dense (between 4 and 6 sources). Table 4.4 column 5 shows the
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two types of “information source packings” and column 6 shows the “information usage

patterns.”

TABLE 4.4: Information access strategies, including information source packing and
usage (ordered on the number of information sources.)

Conflict
(Partic.# -
Conflict#)

# of
Info.

Sources

# of
Artifacts

Conflict
Resolution

Duration (s)

Info.
Source
Packing

Info.
Usage

Pattern

P2-C1 1 1 40 Sparse —
P3-C1 1 2 80 Sparse —
P4-C1 2 2 190 Sparse Inter.
P5-C1 2 13 390 Sparse Seq.
P1-C1 2 2 100 Sparse Inter.
P7-C2 3 3 130 Sparse Seq.
P7-C3 4 4 440 Dense Seq.
P7-C4 6 6 820 Dense Seq.
P6-C1 6 24 1, 430 Dense Inter.
P7-C1 6 25 2, 190 Dense Seq.

Sparse Packing Five participants used the Sparse packing (see Table 4.4).

These participants used an average of 1.8 information sources, with an average resolu-

tion time of 7 minutes and 18 seconds.

The P5-C1 conflict resolution is an example of a Sparse information packing (see

Figure 4.3), where P5 consulted only two information sources (the commit “history” in

green, the “diff” in black). P5-C1 spanned 12 files, which P5 resolved by using the strategy:

(1) view the list of conflicting files; (2) select a file to go into the code difference view;

(3) read and scroll through the code to understand the conflict; and, (4) accept one of

the (conflicting) code chunks. They were able to complete their resolution session in 6.5

minutes, processing each file in about 30 seconds on average.

A likely reason P5 was able to rapidly move through each file was because they were

already familiar with the conflicting changes: “This is me pretty much for all of it . . . We

changed how we decided to do things . . . That’s really common, . . . It’s probably just an

automatic change . . . ”. Moreover, the conflicting code “chunks” were straightforward, as
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the changes were not semantically related.

In general, when participants used few information sources, they tended to mostly

only refer to the source code that was under conflict and the relevant version history and

commit messages.

FIGURE 4.4: Activity Graph of Conflict P6-C1, showcasing a Dense information
packing with a Interleaved access pattern. The black boxes indicate where

participants were stuck in the StuckForaging pattern

Dense Information Source Packing Resolution of conflicts with Dense infor-

mation source packing took longer to complete than Sparse packing: the average was 12

minutes and 4 seconds vs. 7 minutes and 18 seconds.

As an example, during P6-C1 (shown in Figure 4.4), P6 used 24 artifacts from six

different information sources to resolve the conflict. After scrolling through the “diff view”

(in black), “source code files” (in red), and “commit history” (in green) for more than

15 minutes, P6 began committing fixes for indirect conflicts they had found. Here, we

define indirect conflicts as instances where the merge succeeds, but the merged code fails

to compile, run, or produce passing test results. The first indirect conflict P6 faced in

P6-C1 was in configuration files for the runtime environment. To address this problem, P6

decided to re-implement the changes: “Rather than having to go through all the compare,

I’m just gonna go ahead and re-add our service, because I don’t know what they did on

their branch”. P6 resorted to rewriting the new code entirely to avoid using the diff

functionality provided by Visual Studio.

Next, P6 encountered a potential language version incompatibility problem, and
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consulted a colleague: “Do you know which version of TypeScript we’re on?” The col-

league told them that, because of an ill-timed update, some machines ended up on an

earlier TypeScript version—information P6 could not have gathered through the version

control software tools they were using. P6 then asked their colleague several additional

questions, which seemed to help P6 move fairly quickly and efficiently through the re-

mainder of the resolution. In total, it took P6 about 24 minutes to resolve the conflict,

the second-longest merge conflict resolution session we observed.

Indirect conflicts featured in multiple Dense merge conflict resolution sessions we

observed. Figuring out the context of these changes and how they impacted other parts

of the code was a primary reason why resolving Dense conflicts took longer than Sparse

conflicts (see Table 4.4).

How frequently do participants switch between artifacts?

Participants switched between information sources using two patterns: the Inter-

leaved pattern involves frequently switching back-and-forth and between information

sources and artifacts; the Sequential pattern involves less frequent switching and is

more linear. The two patterns are derived from the k–means clustering previously de-

scribed in Section 4.3.

Table 4.4 shows how each of the conflicts we observed was classified. There was

no correlation between information source usage and information source packing. This is

interesting because it indicates that (1) it’s possible to move through many information

sources fairly linearly; and, (2) even a small number of information sources can burden

developers during merge conflict resolutions. Cases like the first could provide clues for

tool developers about how to make merge conflict resolution less complex and more linear.

Cases like the second could indicate there is something unhelpful about how some infor-

mation sources are presented (e.g., they need to be broken apart, restructured, or related

to other information sources in a better way).
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Two of the merge conflict resolution sessions (P2-C1 and P3-C1) did not fit into our

classification because they involved only one information source.

Sequential (Infrequent Switching) Four merge conflict resolutions used this

pattern. For these resolutions, the participants’ paths through different information

sources and artifacts was relatively linear. On average, participants using this pattern

switched information sources 3.73 times per minute, and used a single artifact for a me-

dian of about 2 minutes and 17 seconds. Within this classification, two of the merge

conflict resolutions were Sparse (P5-C1 and P7-C2) and three were Dense (P7-C1, P7-

C3, and P7-C4).

The conflict resolution of P5-C1 was an instance of Sequential Sparse. P5

switched between information sources infrequently (see Figure 4.3), and used each in-

formation source for a longer period of time than participants using the Interleaved

pattern (e.g., P6-C1, shown in Figure 4.4). In this particular case, P5 had enough knowl-

edge about the changes such that just seeing the code differences between the versions was

sufficient for them to successfully resolve the conflict. P5-C1 was also relatively quick, tak-

ing only 6.5 minutes. The other Sequential Sparse merge conflict, P7-C2, was resolved

even more quickly, in 2 minutes and 10 seconds.

P7-C1 is an example of a Sequential Dense merge conflict resolution illustrated

in Figure 4.5. P7 had the most project experience (over 10 years) out of all our partic-

ipants and 15 years of software development experience. Despite that, P7-C1 took the

longest out of all merge conflict resolutions we observed: 36.5 minutes. Even though the

resolution took a long time, P7 moved accessed the different information sources (and its

artifacts) in a relatively linear fashion (roughly following this sequence: code, run, his-

tory, diff, text/build, documentation). P7 encountered multiple issues, including indirect

conflicts and breaking changes that had to be left for a front-end developer to fix. P7

also encountered a database conflict that had to be resolved by switching to an entirely
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new Visual Studio solution and a different place in version control: “Now you’ve got two

branches to have to keep in sync and you have to just know ... and that really sucks.” Our

overall impression of P7-C1 was that P7 knew what to do (including when to leave the

fix to others), allowing them to move from one information source to the next to resolve

problems. Also, P7 had institutional knowledge about the project (and its past decisions)

that newer developers to the project might not be aware of—and that information would

not be available through any of the software tools the team was using.

Interleaved (Frequent Switching) Four instances of merge conflict resolutions

used this pattern. On average, participants using this pattern switched information sources

6.55 times per minute, and used artifacts for a median of about 1 minute and 39 seconds.

Within this classification, two of the merge conflict resolutions were Sparse (P1-C1 and

P4-C1) and one was Dense (P6-C1).

In both the Interleaved Sparse merge conflict resolutions (P1-C1 and P4-C1),

the participants used only the diff and test/build information sources, switched between

information source artifacts frequently, and took less than 3.5 minutes to resolve. This

gives us reason to conclude that these were very simple merge conflicts.

In contrast, the Interleaved Dense merge conflict, P6-C1, took almost 24 min-

utes to resolve (Figure 4.4). As mentioned previously, P6’s conflict involved a change to

configuration files. P6 had to piece together information from different sources and com-

bine and contextualize that information within their own mind; gathering that information

required referring back to the (information source) artifacts multiple times. The combina-

tion of having to look through many kinds of information sources, and having to look back

and forth between information source artifacts, suggests that the merge conflict resolution

tools available to P6 were particularly unhelpful at resolving that configuration-related

merge conflict.
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Implications

Once participants understood how to resolve their conflicts, implementing those fixes

was relatively quick—it was sifting through information that took time. This was in part

because the information sources participants had to go through were lengthy and detailed,

but the information itself wasn’t helpful: It was irrelevant to the fix but participants still

had go through it, which wasted their time and didn’t lead to a resolution. For example,

we saw this with P5 who, even though they were familiar with the conflicts, had to

spend several minutes confirming that lines of code marked as “conflicted” were actually

identical or only differing in a variable name or value. One possible way tools could help

with situations like these is by helping developers pay attention to information that is

directly relevant to the conflict and potential resolutions (e.g., by hiding irrelevant code,

commit messages, history, etc.)

Another way participants spent their time was trying to understand the connec-

tions between information sources. For example, during indirect merge conflicts, par-

ticipants struggled to understand the implications of test failures and compile/runtime

errors messages in terms of how they related to the conflict. P6 encountered this, and

spent substantial time trying to track down what turned out to be a TypeScript version

incompatibility—in the end, it wasn’t the tool that led to resolution, it was a colleague

who happened to be within shouting distance. Tools could help with situation like these

by more intelligently interpreting errors, better understanding developers’ machine state

(e.g., configuration), and by keeping track of differences in machine state between machines

of developers on the same project.

4.4.3 Synthesizing Information (RQ2)

Information seeking and the process of sensemaking are often entwined (see Fig-

ure 4.1). Once developers find information they need about a conflict during the foraging

loop, they switch to the sensemaking loop to synthesize and contextualize the changes from
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TABLE 4.5: Observed Sensemaking Patterns

Pattern Name Description # of instances

StuckForaging The participant is stuck in the foraging loop,
and does not progress past the Evidence
File step for more than 5 steps.

13

HuntingForData The participant is constantly switching be-
tween the Evidence File and Hypothesis
Testing steps.

59

QuickResolution The participant reaches the Presentation
from the beginning of the resolution, or since
the previous Presentation step, without
backtracking through the sensemaking hier-
archy.

27

SkippingTheHypothesis When a participant skips the Hypothesis
Testing step and moves straight to the Pre-
sentation or Reevaluation steps.

25

each branch with respect to the overall codebase and its history. This synthesis drives the

potential resolution solution.

Four common sensemaking patterns emerged from our results: Two relate to when

participants were “stuck” finding the right information (StuckForaging) or synthe-

sizing it HuntingForData) and two that relate to the resolution of the conflict itself

(QuickResolution, SkippingTheHypothesis). Table 4.5 defines these patterns and

lists their number of occurrences. Recall, these patterns were identified based on the

sensemaking steps participants followed and the sequence of those steps (Section 4.3).

Note also that different instances of these sensemaking patterns can co-occur in a single

conflict resolution instance. For example, P7 interleaved HuntingForData (Figure 4.5

(a)) with QuickResolution (Figure 4.5 (b)) when resolving P7-C1.

I am stuck finding the right information

Participants were in the StuckForaging pattern when they had difficulty gath-

ering the information they needed—they were stuck in the foraging loop. Specifically,

StuckForaging is when participants did not progress past the Evidence File step for
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more than five steps. There were 13 instances of this pattern across five participants.

Participants were either stuck in the Shoebox step or the Evidence File step (a

majority were in the latter group). For example, P6 (when resolving P6-C1), was stuck

in the Shoebox step trying to find the configuration problems generated by the merge

conflict. Figure 4.4 shows the two instances where they were stuck (in black boxes).

Earlier in the conflict (Figure 4.4 (a)), they were stuck in the Evidence File step for 4

minutes, trying to understand what caused a large conflict (over 50 lines). The extensive

code differences made it difficult to understand the changes and what was causing the

conflict from the “diff” view (black dots). Even after re-consulting the version history

(green lines), it still took P6 some time to figure out a solution.

In the second instance, highlighted with a box in Figure 4.4 (b), the participant

was having trouble compiling because of a TypeScript version incompatibility. The team

had upgraded the project version, but the participant was still using the older version

and was not aware of the upgrade. They found some hints but were still stuck: “I’m

just trying to figure out... there’s some TypeScript errors after the merge.” They checked

the history, the build output and the source code multiple times but to no avail. Finally,

they consulted a colleague who mentioned the version upgrade. Having this information

allowed P6 to move forward in their resolution. At the end of the conflict resolution, P6

made sure to reflect the version upgrade in the project’s documentation (final purple line).

I am stuck making sense of the information

Once participants thought they had found the right information, they had to syn-

thesize it to see if it helped with the conflict resolution. Oftentimes, they realized that the

data they had gathered was insufficient or incorrect and had to go back to the foraging

loop to collect more data. In our analysis, we refer to this as the HuntingForData

pattern, where participants switched between the Hypothesis Testing and Evidence

File steps when they collected additional information.
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Figure 4.5 shows an example of this pattern, with instances of HuntingForData

in solid-line boxes. P7’s merge was initially successful but then they encountered an

indirect merge conflict—the version control system did not detect any conflicts, but the

code failed to run after the merge was complete (the blue line at the start of Figure 4.5).

P7 commented about this: “If I hadn’t run the application, I would have not got this.”.

During the conflict resolution, P7 showed the HuntingForData pattern three times at

the beginning of the resolution process, where they constantly went between looking for

information (in the Evidence File step) and trying to understand why the build was

failing by investigating the code (red lines in Figure 4.5). P7 was in this pattern for 4

minutes before making progress on the resolution.

During the resolution, they were also unsure why their attempts at a solution were

not working and they struggled to understand the reason behind the conflicting changes:

“So what are we trying to do here?” P7 would edit the code, then the IDE would report a

problem with their edit—this happened about 14 times in a row until P7 was finally able

to get to the bottom of it: “Now I think I understand why they had to cast it,” although

the IDE warning messages were not pointing to the root cause of the issue: “Alright, what

does it not like?”

P7 ultimately found that the failure was caused by a change to a function’s return

type, and modified the code so that the compiler would detect similar conflicts in the

future: “Now the compiler would catch if this happens again.”. Finally, he made a note of

the issue in the project documentation (purple line at the end of Figure 4.3).

Another factor that made merge conflict resolution difficult for multiple participants

was when changes had conflicting requirements, which meant the parallel changes were

inherently incompatible and an acceptable resolution required finding a middle-ground

solution. For example, P7 ran into a particularly difficult case of this during P7-C4, when

they had to merge two sets of other people’s changes. Unfortunately, P7 wasn’t familiar
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FIGURE 4.5: Resolution pattern of P7-C1. The solid-line boxes are time spans when
instances of the HuntingForData pattern occurred; an instance is magnified in

subfigure (a). Dashed-line boxes are time spans when instances of the
QuickResolution pattern occurred; an instance is magnified in subfigure (b).

with changes on either side of the conflict: “I’m gonna have to go back . . . and see if I can

see when they were changed, why they were changed, and see if I can decide which one to

pick.” This conflict took P7 13 minutes and 40 seconds to resolve.

Another reason participants constantly switched between loops might have been

because the information sources were complex, creating memory and comprehension chal-

lenges. For example, P7 repeatedly switched between test results (which explained why

the test failed) and the code: “What did it not like? . . . What did it not like?”

I now know what to do

Once participants knew what caused the conflict, they were able to quickly resolve

it—reflecting the QuickResolution and SkippingTheHypothesis sensemaking pat-

terns.

QuickResolution is defined as when a participant begins trying to resolve part

of a merge conflict and reaches the Presentation step without backtracking through

the sensemaking hierarchy. This pattern indicates the developer is in the “fast lane”,

quickly zipping through the sensemaking steps towards a resolution. QuickResolution
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occurred most often after the participant emerged from HuntingForData. After they

found the right information, they could “power through” the remainder of the conflict.

There were 27 instances of this.

In some cases, participants already knew why the conflict occurred or the solution

was obvious from the outset. In other cases (e.g., P7-C1, Figure 4.5), instances of Quick-

Resolution patterns occurred interspersed with other patterns. For example, once P7

understood why there was a conflict, they were able to quickly resolve the conflicts, in

many cases skipping over the Hypothesis Testing step as they had a good understand-

ing of the problem.

The P7-C1 resolution included six instances of QuickResolution.

SkippingTheHypothesis is when a participant bypassed the Hypothesis Test-

ing step altogether, meaning they were so certain about which version of the conflicted

code to commit that they jumped to the end of the resolution immediately after under-

standing what the conflict was about. When participants were stuck in this pattern, they

resolved the merge conflict without examining or modifying code or (seemingly) taking

time to consult any information sources at all. Participants used this pattern when the so-

lution to the conflict was obvious. We had 25 instances of the SkippingTheHypothesis

pattern.

Other strategies for making sense

A few participants used different strategies for becoming unstuck, or for getting

help with making sense of the merge conflict. For example, P6 asked a colleague for

help. Even though they were one of the most experienced participants on the team, they

asked the author of the changes clarifying questions about the problems they were facing.

In other cases (e.g., P7-C1), the more experienced participants knew information about

the project structure that was crucial for correctly resolving a build error generated by

a merge conflict resolution—they were aware of information that novice participants or



97

participants new to the project were less likely to be aware of. New tools and processes

could make this type of information easier to attain, or it could point developers to team

members likely to have the necessary knowledge.

Implications

Finding the right information is important for successful merge conflict resolution.

However, finding the right information can be difficult; developers can get StuckFor-

aging. Knowing where to look, or who to ask, can make this task a lot easier for the

developer, especially if they are novice to the project. A recommendation system, which

could point developers to the right information source, or the right person, could help

developers be more effective when resolving merge conflicts.

We also observed that evaluating a potential solution to a merge conflict resolution

can be challenging, resulting in participants getting stuck in the Hypothesis Testing

step. A developer can only run/test their solution after all the conflicts have been resolved,

as most modern version control systems will render the code uncompilable once a merge

conflict has occurred. This makes it very difficult for developers to evaluate the code while

the merge conflict resolution is in progress. Providing ways to evaluate the code when the

resolution is partially complete could alleviate some of the pains developers face.

Finally, if tools are able to anticipate runtime conflicts such as the one P7 experi-

enced, the problem could have been resolved by the developer who wrote the code, before

they committed it and broke the build for others.

4.5 Threats to Validity

As with any empirical research, our investigation has threats to validity. In this

section, we explain threats related to our investigation and ways we guarded against

them.
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Generalizability threats

Our goal was to qualitatively investigate the conflict resolution behavior of profes-

sional developers. Therefore, we opted to get a small, but rich data set (through in-situ

observation), which makes it difficult to generalize our results. Our results serve as a first

step toward a deeper understanding of why and where developers struggle when resolving

conflicts. Additional studies are needed to generalize the results across different companies

or domains.

Construct threats

As with any observational study, our data is susceptible to the Hawthorne effect [11],

whereby participants may have presented an ideal behavior. However, we believe this

effect is minimized because merge conflict resolution can be an inherently difficult task.

While developers might want to perform better, they will still face the same barriers,

whether they were being observed or not. Second, because participants had to prompt the

researcher to observe them, they may have chosen only “straightforward” or “noteworthy”

conflicts to bring to the researcher’s attention. If the former is the case, then we may have

missed some challenges that developers face with conflict resolution. If the latter occurred

then we missed conflicts that were trivial and would not have added any further insights

to the struggles with resolution.

Internal threats

The definitions we chose for mapping the sensemaking steps to the merge conflict

activity could be subjective. However, the codebook of sensemaking steps was validated

by the first and second author, by independently coding 20% of the data. We achieved

an IRR of 0.82, measured using Cohen’s kappa, which suggested the two authors were in

near perfect agreement [107].
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4.6 Related Work

4.6.1 Conflict Avoidance

Biehl et al. [24] propose FastDASH, a tool that enables awareness between team

members by providing a dashboard that shows check outs, modifications, and staging of

files among members of a team. Servant et al. [139] propose CASI as a conflict avoidance

tool that relies on visualizations of changing elements within a program to allow coordi-

nation among developers. Estler [60] describes a collaboration framework that integrates

fine-grained changes and real-time awareness capabilities to prevent conflicting changes

from being submitted to shared code repositories.

4.6.2 Workspace Awareness

da Silva et al. [48] propose Lighthouse to show design level changes (in the form of

UML diagrams) among all developers on a project. While this approach–and all those in

the previous subsection–provide awareness of potential conflicts, they require the developer

to actively monitor and discern if a conflict will (or has already) occurred.

Sarma et al. [137, 136] go a step further and propose Palant́ır, which monitors

other developer’s workspaces and non-obtrusively notifies the developer if a conflict has

happened. Whereas, Brun et al. [31] propose Crystal, which monitors selected branches in

a repository and preemptively merges in order to detect conflicts earlier. Crystal detects

both direct conflicts (changes to the same line of code), and indirect conflicts (changes to

a different line that cause build or test failures) and provides notification to developers.

Similarly, Hattori and Lanza [77] propose Syde that monitors for changes at the

Abstract Syntax Tree (AST) level to provide more precise information to the developer.

Finally, Guimarães and Silva [74] propose WeCode, which also merges in uncommitted

code in order to reduce the time between introduction and detection of merge conflicts.

However, these tools and techniques assume that developers consistently react and resolve
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merge conflicts in a unified manner.

4.6.3 Merging Algorithms

Westfechtel [150] propose a merging technique that uses the lexical information of

a language when performing a merge. Apel et al. propose JDime, which provides support

for semi-structured [16] and structured merges [15]. However, these techniques only use

structural information when the unstructured (i.e., text only) merge has failed. Binkley

et al. [25] propose using call graph information to correctly merge different versions of the

program.

Accioly et al. [9] used a semi-structured approach to understand the types of merge

conflicts. These types characterized the frequency and variety of merge conflicts, but not

the patterns that developers employ when resolving such conflicts. Lippe and van Oost-

erom [101] propose an operation-based merging technique that would replay the changes

from two branches, in the order in which they were performed. Dig et al. [57] use this

technique and empirically show that additional types of merge conflicts could be resolved

by tools that understand the semantics of changed code.

4.7 Conclusions

Our observations of seven real-world software development professionals resolving

10 merge conflicts yielded the following key results:

• Participants sought out many information sources when attempting to resolve merge

conflicts, and tried sorting through and making sense of the information using two

different information usage patterns and four different sensemaking patterns.

• Two of the sensemaking patterns revealed pain points in the merge conflict resolution

process, in (1) attempting to locate information necessary for the resolution, and in
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(2) attempting to implement different potential solutions, without success.

• Despite the number of information sources accessed, participants often needed to

switch between information sources frequently, potentially incurring high cognitive

costs.

Now having gained a sense of how software developers resolve merge conflicts, we

find there’s a disconenct between human problem-solving processes and the technological

systems meant to support these human processes. This indicates limits—perhaps unnces-

sary ones—on the rate of growth for successful and efficient computer-human systems with

low cognitive costs: For humans to be kept “in-the-loop”, we must adapt our technological

support systems to how humans think—not the other way around.
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5 PLANNING FOR UNTANGLING: PREDICTING THE
DIFFICULTY OF MERGE CONFLICTS

Caius Brindescu, Iftekhar Ahmed, Rafael Leano, Anita Sarma

The 42nd International Conference on Software Engineering, 2020

5.1 Introduction

Version Control Systems (VCS) have made large teams possible, enabling thousands

of developers to contribute together in building Open Source Software (OSS), and propri-

etary software and technologies. However, despite the introduction of new, sophisticated,

distributed version control systems, the basic protocol of using VCS still remains the same:

code in private workspaces and synchronize periodically.

One challenge with this coordination protocol is merge conflicts. Merge conflicts

occur when developers modify the same lines of code simultaneously. Research shows that

merge conflicts are prevalent: about 19% of all merges end up in a merge conflict [31, 12,

90].

Merge conflicts have an impact on the code quality [12, 51, 118] and are disruptive

to the development workflow. To resolve a merge conflict, a developer has to stop what

they are doing and focus on the resolution. Resolving a conflict requires the developer to

understand the conflicting changes and craft a solution that satisfies both sets of require-

ments driving the change. This disruption to the workflow can be compounded if conflict

resolution requires additional expertise [45, 51, 118]. These factors can prompt developers

to postpone the conflict resolution, or “kick the can” further down the road. In fact, a

study by Nelson et al. [117] found that 56.18% of developers have deferred at least once

when responding to a merge conflict. However, the later a conflict is resolved, the harder
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FIGURE 5.1: Model of Developer Processes for Managing Merge Conflicts, from Nelson
et al. [117]

it is to recall the rationale of the changes. which makes the resolution process that much

more difficult [20, 64]. As aptly put by a participant from the study by Nelson et al. [117]:

“Deferring a merge conflict simply kicks the can down the road (or off a cliff).

Typically resolving the conflict only gets more difficult as time passes.”

However, sooner or later the conflict has to be resolved. To do so developers follow a

process with four distinct resolution phases [117], as illustrated in Figure 5.1. Developers

alternate between clean and conflicting states of code. Beginning from (1) the development

stage, developers create an (2) awareness of conflicts within the codebase either passively

when they face a conflict during a merge or by proactively monitoring ongoing changes.

Once aware, developers begin (3) planning for a (4) resolution to fix the conflict. And

finally, developers (5) evaluate the effectiveness of their deployed resolutions (returning to

planning if the resolution fails).

Several research works exist to support parts of the conflict resolution process. For

the Development and Awareness phase, developers can benefit from workspace awareness

tools [137, 31, 24, 74]. When working on the Resolution phase, developers can utilize
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different semi-automated merge techniques, such as unstructured merge [21, 40, 28, 112,

116], structured merge [34, 140, 150], semantics-based merge [23, 83], and hybrid merge [98,

15, 16]. The Evaluation phase has support through existing VCS (e.g., Git, SVN, TFS,

CVS) and Continuous Integration systems (e.g., Jenkins, Travis CI, TeamCity).

None of these works, however, support the Planning phase of merge conflict res-

olution. We aim to close this gap and help developers plan their conflict resolution by

predicting the difficulty of a merge conflict.

Our work can facilitate planning of conflict resolution in several ways. It can help

developers plan: (1) when to resolve the conflict; if the conflict is simple they can resolve it

instantaneously, otherwise they may need to allocate a longer resolution time period, (2)

who to resolve it with; if a conflict is difficult they may need to coordinate a collaborative

merge, (3) how much to review or test the merged code; if a conflict is difficult it may

behoove the developers to more rigorously review and test the merged changes.

In this work, through a large scale empirical investigation we analyze what makes

a merge conflict difficult, and whether we can predict the severity of a conflict from its

underlying changes. More formally, we aim to answer the following research questions:

RQ1: How well can we predict the difficulty of merge conflicts?

RQ2: What makes a merge conflict difficult?

RQ3: How portable is our conflict difficulty prediction model?

To answer these research questions, we mine the characteristics of 6,380 merge

conflicts from 128 Java projects in GitHub. To enable a prediction of merge conflict

resolution, we gather a total of 16 process- and code-related metrics, such as the conflicting

lines of code, differences in abstract syntax trees (AST), cyclomatic complexity (CC) etc.

We use metrics that are available as the conflict develops (i.e., before the developer merges

their changes), therefore, enabling developers lead time for their planning.
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Our results show that we can predict the difficulty of merge conflicts accurately (an

AUC of 0.76). Knowing which conflicts are difficult can help developers plan their conflict

resolution. Our work also serves as a baseline prediction model for further research.

5.2 Related Work

Merge conflicts are a common side effect of concurrent development [159]. While

the use of version control systems flags divergent changes and prevents one change from

overwriting another, they cannot always automatically resolve conflicts. Researchers have

tried different approaches to help developers deal with conflicts: (1) early detection of

conflicts, (2) merging assistance, and (3) prevention of conflicts.

5.2.1 Early detection

Conflicts tend to grow over time. Therefore, early detection helps limit the files and

the size of the changes involved in a conflict. Workspace awareness tools monitor ongoing

work to detect emerging conflicts. The goal of these tools is to “catch” the conflicts early

so that it is easier to resolve them. Biehl et al. [24] propose FastDash, which identifies

developers modifying the same file and notifies them about potential merge conflicts as

they emerge. Hattori and Lanza [78] propose Syde, a tool that analyzes changes made to

the source code at the level of AST operations. Syde detects conflicts by comparing the

(AST) tree operations. Guimaraes and Silva [74] introduce WeCode, which continuously

merges changes in the background to detect merge conflicts. Tools such as Palantir [137]

and Crystal [31] proactively detect both merge conflicts, as well as semantic conflicts; the

latter being conflicts that are revealed by failed builds or tests. Servant et al. [139] propose

CASI, a tool that allows developers to visualize the code that their changes impact, with

the aim of detecting semantic conflicts.

While these tools notify developers of emerging conflicts, they do not provide any
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assistance in resolving them. Our focus is on predicting the difficulty of merge conflicts

so that developers can prioritize their resolution efforts.

5.2.2 Merging Assistance

Another major thread in merge conflict research is support for the resolution of

merge conflicts. Mens [110] provides a comprehensive survey on the state of the art

merging techniques. Apel et al. [16, 15] propose a new merging approach; called semi-

structured merging. This technique considers the syntactical structure of the code that

is to be merged. Lippe and van Oosterom [101] also propose a new merging technique,

operational merging, which considers the changes that were done to the code, in addition

to the end result.

While we do not attempt to provide resolution support to developers, our work may

help developers choose one resolution strategy over other based on the difficulty of the

conflict.

5.2.3 Prevention

Finally, another way to deal with conflicts is to prevent them from occurring in

the first place. Kasi and Sarma [90] try to avoid merge conflicts altogether by scheduling

tasks in a way that minimize the probability of conflict. Wloka et al. [152] introduce

SafeCommit. It uses a static analysis approach to identify changes that can be committed

safely, i.e. they do not cause any of the tests to fail. This allows developers to cherry

pick the commits that are safe to commit (and avoid conflicts). Dewan and Hedge [55]

propose a new development process that allows developers to synchronously collaborate

on the conflicting code and solve the conflicts before finishing the task. Leßenich et al.

[99] conducted a survey of 41 developers and inferred 7 indicators to predict the number

of merge conflicts. Then they analyzed 163 open-source projects found that none of these

7 indicators suggested by the participating developer has a predictive power concerning
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the frequency of merge conflicts.

While some conflicts can be prevented, others are bound to occur. For example, Kasi

and Sarma in their approach have to relax some constraints to allow some conflicts to occur

when the space becomes too constrained. Leßenich et al. [98] and Cavalcanti et al. [38]

examined 50 and 60 projects, respectively, to compare semi-structured and unstructured

merge techniques in terms of how many conflicts they report. Both studies found that

semi-structured merge techniques can reduce the number of conflicts by approximately

half, but not eliminate them. Our work can be useful as a guide for which constraints (or

conflicts) can be relaxed.

5.2.4 Conflict difficulty

Different studies have investigated ways to measure the amount of effort required

to resolve a conflict. Resolution time varies significantly across projects and ranged not in

hours, but in days [?]; and it can be used as a proxy to measure the difficulty of conflicts

(difficult conflicts take more time to solve). The Orion approach by Prudencio et. al [127]

tried to minimize the number of files to be locked using the actions applied in the file,

and the committed actions. Their end goal was to minimize the number of conflicts that

would occur, at the cost of reduced development concurrency. McKee et al. [108] and

Nelson et al. [117] interviewed developers and then performed a follow-up survey with 162

developers to build a detailed understanding of developer perceptions regarding merge

conflicts. They found, among other things, that complexity of the conflicting lines of code

and file as a whole, number of LOC involved in the conflict, and developers’ familiarity

with the lines of code in conflict all impact how difficult developers find a conflict to

resolve. Menezes et al. [109] used number of conflicting chunks to determine patterns that

occur in merge conflicts.

All in all, none of these related works deals with the main purpose of the our

work: the prediction of difficulty of potential merge conflicts in order to help developers
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prioritize merge conflicts to inspect, accomplish more things given tight schedule, and not

waste reviewing effort on trivial merge conflict resolutions.

5.3 Methodology

To predict the difficulty of conflict resolutions, we collect a representative corpus

of merge conflicts to be examined by four different machine learning classifiers. We use

the following process during our study: (A) we collect a sample of Java projects hosted

on GitHub; (B) we filter projects that do contain merge conflicts, are inactive, or toy

projects; (C) we extract the relevant attributes needed for merge conflict analysis by

conducting a literature survey; (D) we label a subset of merge conflicts manually; (E) we

conduct supervised training with four machine learning classifiers; (F) we compare the

results from each of the classifiers; (G) we perform feature selection; and, (H) we repeat

steps (E) and (F) for cross-project merge conflict difficulty prediction. We describe each

of these steps in further detail in the following subsections.

5.3.1 Project Selection Criteria

We made our project selections to be applicable to the requirements of the four

machine learning classifiers and to be representative of code developed in the real world.

Therefore, we only select active, open source projects from GitHub. We opted to select

projects that use the same programming language to control for language-specific differ-

ences in the Lines of Code (LOC) metrics, program dependencies, and construct compa-

rability. We use Java as our language of choice for two reasons: (1) Java is one of the

most popular languages (according to the number of Java projects hosted on Github [68]

and the Tiobe index [7]); and, (2) there are more mature analysis tools available for Java

as compared to other programming languages.

We began by selecting 900 Java projects returned by GitHub search mechanism
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without any filtering criteria. From these 900 projects, we eliminate projects that were

forked copies of other projects to prevent skewed results, leaving 500 projects in the end.

Since some projects do not compile, either due to syntax, build errors, or missing depen-

dencies, we eliminated an additional 300 projects. After filtering, our corpus contained

200 Java projects we were successfully able to compile and run.

We follow the guidelines presented by Kalliamvakou et al. [89] for mining Git repos-

itories. We removed projects that were too small (fewer than 10 files, or fewer than 500

lines of code), and those that were not active in the past 6 months. We also removed

projects that do not contain merge conflicts. These selection criteria were required since

there is a long tail of small and short lived projects on GitHub; including trial projects,

projects with a single author, or projects with no parallel development history, which did

not have any merge commits. We focus on collaborative software development for this

work, and we therefore remove projects that are not collaborative in nature. Our final

corpus had 128 projects. Table 5.1 provides a summary of project statistics for these

projects, including: number of lines, total number of commits, total number of merges,

total number of merge conflicts, number of developers, and number of days that project

has existed on GitHub as of March 1, 2018.

TABLE 5.1: Mined Projects Statistics

Dimension Max Min Average Std. dev.

Line count (LOC) 542,571 751 75,795.04 105,280.1
Total Commits 30,519 16 3,894.48 5,070.73
Total Merges 4,916 1 252.60 522.73
Total Conflicts 227 1 25.86 39.49
# Developers 105 4 72.76 83.19
Duration (days) 6,386 42 1,674.54 1,112.11

We also manually categorized the domain of the projects by looking at the project

description and using the categories used by Souza et al. [52]. Table 5.2 has the summary of

the domains of the 128 projects and their percentage of representation within our corpus.
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TABLE 5.2: Distribution of Projects by Domain

Domain Percentage

Development 61.98%
System Administration 12.66%
Communications 6.42%
Business & Enterprise 8.10%
Home & Education 3.11%
Security & Utilities 2.61%
Games 3.08%
Audio & Video 2.04%

5.3.2 Conflict Identification

We queried the repository of the 128 projects, from which we extracted 556,911

commits. This included 36,122 merge commits. Since Git only stores information of

commits, but does not record instances of merge conflicts we identified merge conflicts

by following branch merges and analyzing the commits involved as shown in Figure 5.2.

First, we identified merges as commits with two or more parents, such as commit AB.

Then we merged the parents of that commit (An and Bn) using the git merge command.

If the merge was unsuccessful then AB was marked as a merge conflict (m). Using this

approach, we identified 6,380 merge conflicts.

We consider a merge conflict to be an instance when running git merge failed

because of concurrent changes in the 2 (or more) branches being merged. A conflict can

have multiple conflicting files, each with multiple conflicting chunks. For the purposes of

this research, we focused on conflicts that occurred in source code files (.java).

FIGURE 5.2: Identifying conflicts in git, merge AB has two parents An,Bn that cannot
be merged automatically.
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5.3.3 Data Collection

Once we identified a merge conflict, we extracted additional information relevant

for the analysis of the conflict, such as: the authors involved in the commits, the commit

message, the files that were edited, the changes that were made (by using the git diff

command), and so on. This was done for the parent commits An and Bn, as well as all

commits on either branch back to the base commit (i.e. the last shared parent commit).

That is, from all commits A1 to An and B1 to Bn (in Figure 5.2).

Performance of any prediction is dependent on the features used. Therefore, we

wanted to use a comprehensive set of features. In order to get an overview of the current

state of the art research on merge conflict difficulty and metrics used, we conducted a

literature survey. We targeted all full conference and journal papers related to merge

conflict difficulty from 2008 to 2018 (inclusive) that appeared in top Software Engineering

venues: ICSE, FSE, ASE, ICSM/ICSME, MSR, ESEM, TSE, TOSEM. Starting from

the proceedings, we searched for a set of keywords including “merge conflict difficulty,”

“merge conflict resolution effort” etc. We found only 4 papers [127, 117, 109, 108] and

we analyzed what metrics were used in the studies.

Based on the metrics reported in the identified papers and also based on intuition,

we obtained 16 factors for each conflict, which we list in Table 5.3. We grouped these

factors into five unique dimensions: size, complexity, diffusion, development pattern and

comment [153]. We gathered these factors from either the Git repository, or we derived

them by analyzing the source code, when the factors are related to the process and code

metrics (characterized in numerical form).

Since certain metrics are calculated at different levels of granularity (e.g. complex-

ity metrics are calculated at the method level), we aggregate all factors to a per conflict

measurement using the average. In Table 5.3, the subscript is the operation used for ag-

gregation. For example, for cyclomatic complexity CCsum is the sum of the cyclomatic
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complexities of all the files modified in both branches. We calculated file-based metrics

using all modified files and conflicting files. Size metrics use LOC as the unit of measure-

ment.

We also include branch and author commits patterns. They refer to the temporal

order in which commits are ordered in separate branches. The branch pattern reflects

how commits are interleaved between branches. For example, in Figure 5.3, commit A1

in branch A followed by commit B1 in branch B, which yields the pattern AB. We

continue building the pattern, until we reach the final ABAABBBA. We then collapse

identical letters, yielding the final pattern ABABA. We collapse the letters, because we

are interested in the interleaving, and not the total number of commits. A longer pattern

means that the commits were more interleaved (tangled).

Similarly, author pattern shows how commits were interweaved between different

authors. In Figure 5.3 we have 3 authors: John (J), Alice (A), and Oscar (O). Applying

the same rules as the branch pattern, we end up with JAOAJ . Our rational for using these

patterns as features in our analysis is that, the more interleaved (tangled) a development

patterns is, the more difficult it should be to untangle it when resolving the merge conflict.

FIGURE 5.3: Example of calculating the branch and author patterns for a merge
commit. Time flows from left to right and the arrows point to a commits parent(s).
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476 Factory<byte [ ]> xidGlobal IdFactory = createXidGloba l IdFactory
( ) ;

. . . // no c o n f l i c t s in t h e s e l i n e s
482 txManager = new ReadOnlyTxManager ( xaDataSourceManager ,

x idGlobalIdFactory , l ogg ing . getMessagesLog (
ReadOnlyTxManager . class ) ) ;

Listing 4: Authors’ resolution of a Severe merge conflict. In this example, the
developers made two concurrent refactorings to the ReadOnlyTxManager

constructor, one of the refactorings introducing a new parameter.

5.3.4 Training Data Labeling

Before training the classifiers, we first manually labeled conflicts as either severe or

trivial based on their difficulty of resolution. From the pool of 6,380 conflicts, we extracted

and labeled a random sampling of 600 conflicts (approximately 10% of all conflicts). This

random sample represents conflicts in 105 distinct projects out of the total of 128.

In order to validate our evaluation, the first two authors independently labeled 60

conflicts based on their difficulty. In order to evaluate the difficulty, the authors recreated

each conflict and attempted the resolution. The authors used the time required to solve

the conflict as well as the cognitive load, in order to classify the merge conflict as difficult

or Severe or Trivial. In order to validate the resolution, we compared our merge conflict

resolution with the one that was checked in the version control system. We considered

the developer’s merge conflict resolution as the oracle, as it is most likely to be correct,

given their in depth knowledge of the code. In all cases, our resolution was functionally

equivalent to the developer’s resolution. Listing 4 shows part of the author’s resolution

for a Severe merge conflict, which is functionally identical to the developers’ resolution10.

We checked for agreement by using Cohen’s Kappa, and we achieved an IRR of 0.8.

The two authors then independently coded the rest of the conflicts, in order to build the

training set.

10https://github.com/neo4j/neo4j/commit/178be5393fcfaf860c72ba2b9f26acc05b621375\#diff-

af31f64d35f8926cc7c52a61578eb839R482https://github.com/neo4j/neo4j//commit/178be5
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5.3.5 Feature Selection

To select the appropriate metrics we carry out an analysis of potential multicollinear-

ity between the metrics. Previous research [19, 141] demonstrated that many process and

source code metrics are correlated, both with each other, and with lines of code (LOC).

Ignoring such correlations would lead to increased errors in the estimates of model per-

formances, and increased standard errors of the predictions [76]. We checked for multi-

collinearity using the Variance Inflation Factor (VIF) [41] of each predictor in our model

for our data set. VIF describes the correlation between predictors. A VIF score between 1

and 5 indicates moderate correlation with other factors, and these selected the predictors

are with VIF < 5. This step was necessary since the presence of highly correlated factors

forces the estimated regression coefficient of one variable to depend on other predictor

variables that are included in the model. Out of the 16 factors, 5 had VIF ≥ 5, so we

ended up using the remaining 11 factors for building the classifiers.

We further investigate the resulting eleven factors in their effectiveness in predicting

the difficulty of a merge conflict, and report the results in Section 5.4. We find that prior

work has also used a subset of these factors as a proxy for difficulty of a conflict [127, 90],

which is encouraging for our own work.

5.3.6 Machine Learning

We trained and tested our sample using 4 different machine learning techniques:

Support Vector Machines (SVM), Logistic Regression, Multi-Layer Perceptron (Percep-

tron), and Bayes Network (BayesNet). For all techniques, we used a 10-fold cross-

validation on our sample of 600 labeled conflicts. We used a wide range of learning

techniques to reduce the risk of dependence on a particular algorithm or implementation.
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BayesNet

We use the Bayes Network algorithm as we expected features to not be independent

and Bayesian Network does not have assumptions regarding independence. For example,

LOCdiff and files (number of files) share a relation, as editing more files will also increase

the LOC edited. Also, Bayesian Networks can represent richer models compared to naive

Bayes classifiers. We used the SimpleEstimator to calculate the conditional probabilities

used by the Bayes algorithm. Finally, BayesNet uses a hill-climbing greedy algorithm for

evolving, combined with a K2 search algorithm to create its network. We configured with

a batch size of 100.

Binomial Logistic Regression

For the Binomial Logistic Regression, we started with a full model using all 11

attributes from conflicts. This was followed by a model selection using Akaike Information

Criterion (AIC), which estimates the information loss between models in comparison to

the original. It ultimately selects the best model based on both the fit of the model and

the information lost. We then use the selected attributes to build the new, final model,

on which we evaluate.

Support Vector Machine (SVM)

Based upon an assumption that conflicts would be linearly separated across factors,

we selected SVM. Our SVM uses the standard Radial Bases Function (RBF) Kernel and

for the other parameters we performed a grid search to choose the best classification found.

This configuration result had a 1,000-cache size, a 1,000 size, a gamma (γ) of 0.0001, a C

of 1,000 and one maximum iterator.
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Multi-Layer Perceptron

We used a Multi-Layer Perceptron to see if it could leverage hidden relationships

not explored in the other algorithms. We configured our Perceptron with a 0.3 learning

rate, a 0.2 momentum, and 500 epochs. The Perceptron would terminate its validation

testing after not being able to reduce its error 20 times in a row.

Bagging

We also used Auto-WEKA [95] for identifying the best classifier, which automati-

cally searches through the joint space of WEKA’s learning algorithms and their respective

hyperparameter settings to maximize performance, using sequential model-based opti-

mization [30] (a Bayesian optimization method). Though there is one Python based

implementation called Auto-sklearn [62], we chose Auto-WEKA because it comprises a

larger space of models and hyperparameters [95] compared to Auto-sklearn. This ended

up identifying “Bagging (Bootstrap aggregating)” [29] as the best technique. “Bagging” is

an ensemble based approach that uses multiple models to fit the bootstrap samples gener-

ated from the original data and then uses voting for classification. Repeated Incremental

Pruning to Produce Error Reduction (RIPPER) [43] was identified as the base learner

(accessible at weka.classifiers.rules.JRip) by Auto-WEKA. These results were generated

by running Auto-WEKA with random seed 123 for 4 hours.

5.3.7 Evaluation

We report the standard precision, recall, and AUC (Area Under the receiver op-

erating characteristic Curve) to asses the performance of the prediction models, because

it is independent of prior probabilities [22]. Also, AUC is a better measure of classifier

performance than accuracy because it is not biased by the size of test data. Moreover,

AUC provides a “broader” view of the performance of the classifier since both sensitivity

and specificity for all threshold levels are incorporated in calculating AUC. Other work



118

related to prediction have used AUC for comparison purposes [56, 66, 67, 156]. We list

the formula used for calculating precision, recall and F-measure below. The AUC curve

is created by plotting the recall against the false positive rate (FPR) at various threshold

settings. We list the formula of FPR also.

• Precision (P): A measure of whether the Severe predictions were actually difficult.

precision =
tp

tp + fp
(5.1)

• Recall (R): A measure of the percentage of Severe instances that the approach

managed to correctly predict.

recall =
tp

tp + fn
(5.2)

• False positive rate (FPR): A measure of the ratio of the number of Severe conflict

wrongly categorized and the total number of actual Severe conflicts.

FPR =
fp

fp + tn
(5.3)

5.3.8 Cross-project prediction

Cross-project prediction is important for some projects, specially projects that do

not have historical data to perform any significant training. Hence, we investigated

whether it is feasible to perform cross-project training following the method used by

Rahman et al. [128]. We do so by training models on one project and testing on all other

projects, ignoring time-ordering.
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5.4 Results

Here we discuss the results of our study by placing them in the context of three

research questions, which investigate the the ability to predict the difficulty of a conflict

(RQ1), factors that are useful in determining the difficulty of a conflict (RQ2), and whether

we can perform cross-project merge conflict difficulty prediction (RQ3).

5.4.1 RQ1: How well can we predict the difficulty of merge conflicts?

To answer this research question, we trained four different machine learning algo-

rithms: Bayes Network (BayesNet), Logistic Regression, Support Vector Machine (SVM),

and Multi-Layer Perceptron (Perceptron). We also used Auto-WEKA [95], which au-

tomatically searches through the joint space of WEKA’s learning algorithms and their

respective hyperparameter settings to maximize performance and identify the best clas-

sifier. The algorithm with the best performance according to Table 5.4 is “Bagging

(Bootstrap aggregating)” with “RIPPER” as the base learner, which has the highest AUC

(0.85). Bagging is closely followed by Bayes Network, which still performs better-than-

chance with 0.78 AUC. On the other hand, SVM performs worst (0.56 AUC). Table 5.4

shows the results in terms of precision, recall, and AUC.

TABLE 5.4: Performance of the classifiers. Bagging has the highest AUC at 0.85.

Precision Recall AUC

SVM 0.70 0.70 0.56
L.R.i 0.70 0.65 0.73
Perceptron 0.75 0.69 0.75
Bayes Network 0.75 0.75 0.78
Bagging 0.79 0.79 0.85

i Logistic Regression

Additionally, we use our Bagging model on the full corpus of 6,380 conflicts to see

the characteristics of the merge conflicts; those that are predicted as Severe or Trivial.
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The model identifies 21% of the conflicts as Severe, and the rest 79% are classified as

Trivial.

In our context, precision shows how well we correctly predict Severe conflicts, recall

shows how many of the Severe conflicts we are able to find. We posit that in our scenario,

precision has a higher priority than recall. This is because incurring more false positives

is likely to make the developer to distrust the tool. As Bagging outperformed all other

classifiers, we report the precision, recall, and AUC of Bagging separately for the two

classes (Severe and Trivial) in Table 5.5.

TABLE 5.5: Results of the Bagging classifier, per class

Class Precision Recall AUC

Severe 0.80 0.49 0.76
Trivial 0.79 0.94 0.85

5.4.2 RQ2: Which characteristics of merge conflicts are associated with its
difficulty?

In Section 5.4.1 we show that it is possible to predict the difficulty of a merge

conflict with high accuracy. Our next step is to understand what are the characteristics

of difficult conflicts. For this purpose we use feature subset selection (FSS). Specifically,

we use “Wrapper” based methods, which considers the selection of a set of features as a

search problem. Different combinations of features are prepared, evaluated and compared

to other combinations [84]. “Wrapper” methods are also able to detect the possible in-

teractions between features. In this technique, a predictive model is used to evaluate the

combinations of features and a score is assigned based on accuracy of the model. We used

RIPPER [43] as the predictive model for feature selection, since it was identified as best

classifier for predicting merge conflict difficulty as explained in (Section 5.3.6).

Using FSS we obtain a set of ten factors from our initial set of 12. The ten selected

factors encompass all the four metric categories (complexity, diffusion, size, and develop-
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ment pattern) to which the original factors belonged (see Table 5.3). All these factors can

be calculated before the conflict occurs. This suggests that each of these categories are

relevant in predicting difficult merge conflicts, even before the developer faces the conflict.

Table 5.6 presents additional information about these ten factors. Two of these

factors include complexity metrics, such the CCsum and the CCavg referring to the mean

and the sum of the cyclomatic complexities of all files modified in both branches. This

suggests that the complexity of the code is an important metric that affects the difficulty

in resolving a conflict. However, calculating complexity metrics require specialized (stan-

dalone) analysis tools. So, in the worst case, developers therefore have to “guestimate”

the complexity of the code based on their own experience.

TABLE 5.6: Feature Selection Results (Sorted based on relative importance)

Category Metric FSS

Human
Perceived
Importance
[?]

Complexity CCsum 1 1
Diffusion Dependencymax 2 7
Diffusion Dependencyavg 3 7
Complexity CCavg 4 1
Diffusion ASTdiff 5 6
Size LOCdiff 6 6
Size LOC 7 4

Size Number of authors 8
Not
mentioned

Dev. Pattern Patternbranch 9
Not
mentioned

Dev. Pattern Patternauthor 10
Not
mentioned

Table 5.6 also shows that development process related metrics are less influential

(Number of authors, Patternbranch and Patternauthor) compared to code related metrics

(CCsum, Dependencymax, Dependencyavg, CCavg, ASTdiff , LOCdiff and LOC ). This

led us to investigate whether there is any difference between these two types of metrics

when it comes to predicting merge conflict difficulty. We perform this analysis since

both process and product metrics have known differences in prediction capability in the
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context of defect prediction [128]. We built the same set of classifiers shown in Table 5.4,

once using only the process related metrics and once using only code related metrics.

Tables 5.7 and 5.8 shows the results in terms of precision, recall, and AUC. Surprisingly,

both process and code related metrics have similar prediction capabilities (AUC values of

0.69 vs. 0.70), unlike defect prediction, where process related metrics were found to be

more powerful [128].

TABLE 5.7: Performance of the classifiers built using only process related metrics
(Number of authors, Patternbranch and Patternauthor).

Precision Recall AUC

SVM 0.68 0.69 0.55
L.R.i 0.69 0.63 0.70
Perceptron 0.65 0.63 0.72
Bayes Network 0.70 0.70 0.69
Bagging 0.69 0.71 0.69

i Logistic Regression

TABLE 5.8: Performance of the classifiers built using only code related metrics (CCsum,
Dependencymax, Dependencyavg, CCavg, ASTdiff , LOCdiff and LOC ).

Precision Recall AUC

SVM 0.65 0.68 0.52
L.R.i 0.68 0.69 0.67
Perceptron 0.55 0.48 0.49
Bayes Network 0.70 0.71 0.72
Bagging 0.70 0.71 0.70

i Logistic Regression

In the last column of Table 5.6 we report the factors that McKee at al. [108] identify

as factors used by software practitioners to gauge merge conflict difficulty. They identi-

fied these factors through a survey of software practitioners. Except for the complexity

category, none of the other top features mentioned by practitioners are in the top features

identified by FSS and vice versa. Clearly there is a disjoint between the human perceived

features and machine learned features. We discuss this further in Section 2.5.
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5.4.3 RQ3: Is cross-project training possible to predict difficult merge con-
flicts?

In RQ1 we tested our models using a 10-fold cross-validation with all our training

data (600 conflicts). However, some projects may not have historical data to perform

any significant training. Cross-project prediction has been investigated in other areas of

software engineering such as defect prediction [102, 149, 158]. However, to the best of

our knowledge, no one has investigated the applicability of cross-project merge conflict

difficulty prediction. We followed the method used by Rahman et al. [128] to perform

cross-project merge conflict difficulty prediction. We train models on one project using

our best algorithm: “Bagging using RIPPER” and test on all other projects.

Figure 5.4 shows the portability of models across projects for different sets of eval-

uation metrics (precision, recall, F-measure and AUC). Performance clearly degrades in

cross-project settings in comparison to “Bagging using RIPPER” algorithms performance

of 0.85 AUC, shown in Table 5.4.

5.5 Discussion

Centrality Matters: The goal of our study is to investigate whether it is feasible

to predict the difficulty level of a merge conflict by using automated (machine learning)

techniques. One factor that emerged as relevant is Dependency. A file that has high

Dependency is likely to be highly coupled with other parts of the code, and therefore has

high centrality. This is problematic for two reasons. First, as the file is central, it has more

reasons to change. For example, a class with multiple functionalities (i.e. a God class [?])

is more likely to be changed for any kind of modification of the software. Second, the more

a file gets changed, the more it’s likely to be involved in a merge conflict. Moreover, the

conflict is likely to contain disparate changes. This presents a challenge as the developer
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FIGURE 5.4: Precision, recall, f-measure and AUC for cross-project training.

has to understand all the changes involved before resolving the merge conflict. Both our

machine learning classifier and developers agree that this is a factor that determines the

merge conflict resolution difficulty.

Tangled Changes: In our analysis we find that Patternauthor is a significant factor

in predicting merge conflict difficulty. A reason for this might be that the more authors

that are involved in the development process, the more disparate the conflicting changes
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are—because each developer is likely working on a different functionality. So, whenever a

conflict occurs, the developer has to understand the broader context of the changes before

attempting to resolve the conflict.

Similarly, a longer branch pattern (Patternbranch) means that the changes are more

tightly tangled. This makes the changes more difficult to untangle when resolving the

conflict. Interestingly, while our classifier identified these as important factors, the devel-

opers did not. This is an indication that developers are not aware that this could be a

potential pain point.

Size does matter : Our classifier also identified the size difference (LOCdiff ) between

the two branches as a relevant factor for conflict difficulty prediction. This is intuitive,

as the more lines are changed, the harder it is to understand the changes that were made

(in that change set). This, in turn, makes it more difficult to the place that change set

in the context of the rest of the code base. When dealing with the difference in terms

of AST nodes (ASTdiff ), this becomes even more important, as the AST node difference

is more likely to highlight semantic changes. In this case, both the classifier and the

developers agree that the size difference between the two branches is an important factor

in determining the merge conflict difficulty.

It’s Complicated: It’s well known that code with higher cyclomatic complexity is

more difficult to understand. Therefore, it’s not surprising that our classifier identified

CCsum as a significant factor for identifying the difficulty of a merge conflict. Another

aspect is that code with high cyclomatic complexity is usually indicative of a complicated

control structure. Therefore, conflicts in that area are more likely to be semantic in nature.

Prior research has shown that areas of code affected by such conflicts are more likely to

be buggy [12]. In this case, both the classifier and the developers agree that this is an

important factor.

Learn from others: Our final observation is that models are portable between soft-
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ware projects. This is an indication that the factors that contribute toward merge conflict

difficulty are more or less project independent. Therefore, our technique can be applied

to new projects, or to projects with little development history and still prove beneficial to

developers.

5.6 Implications

Our findings have multiple implications for tool builders, researchers, and practi-

tioners.

5.6.1 Researchers

Our model for predicting merge conflict difficulty achieved an AUC value of 0.76

when predicting the minority class, which is a high value compared to a baseline of random

classification [106]. However, there is still room for improvement. The research community

should focus on identifying different types of factors (social, product and process) and

investigate their effect on overall prediction accuracy, with the goal of improving the

overall prediction accuracy.

Our results inform future research by providing insights into the factors that are

associated with the difficulty of a merge conflict. Projects share similar features, as demon-

strated by the moderate performance of cross-project merge conflict difficulty prediction.

This also indicates that the prediction process can be bootstrapped even for project that

lacks history. We recommend that researchers should also focus on identifying the best

project selection criteria for bootstrapping cross-project prediction. For bootstrapping,

we should use similar projects. However, what constitutes as a similarity metric between

the project, in this context, is still an open research question. Our results show that cyclo-

matic complexity is the most important metric when predicting difficulty. (Table 5.6), so

projects with similar Cyclomatic complexity should could used for bootstrapping. How-
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ever, further investigation is required to make any conclusive or definitive remarks.

We also found that Auto-WEKA, which automatically searches through the joint

space of WEKA’s learning algorithms, and their respective hyperparameters, helped us

to identify the best classifier and increased the AUC value from 0.78 to 0.85 (Table 5.4).

Our finding is inline with the findings of other researchers [148, 146] who have shown

the benefit of parameter optimization in improving classifier performance. Therefore, we

recommend that researchers using machine learning classifiers should seriously consider

parameter optimization to ensure the best performance of the classifiers.

5.6.2 Tool builders

When looking at the types of factors that make a merge conflict difficult, we identi-

fied categories relating to the complexity of the code (Complexity), extent of the change

(Diffusion) and the length of branch pattern (Development Pattern). The Complexity

and Diffusion metrics are already used by researchers and tool builders for merge conflict

prediction. However, we are the first to associate the length of a branch pattern to merge

conflicts and their difficulty. Further research can help identify threshold of branch pat-

tern after which a merge conflict becomes severe. Tool builders can use such thresholds as

a criteria to filter and prioritize the notifications about potential conflicts. This will not

only help users manage the information load, but also will have impact on the quality of

the final product [?].

5.6.3 Developers

Our results indicate that the more “tangled” a piece of code is, the more difficult

it will be to resolve a conflict related to that code. So developers can use the length of

Patternauthor and Patternbranch in deciding merge conflict resolution strategy. Moreover,

it’s more likely that a code with bigger pattern length has diverged a lot from the initial

point and has become difficult for any individual to understand completely. In such
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cases, it will be more productive to do a collaborative merge [45], instead of a developer

performing the merge by herself.

We also found that all ten significant factors in determining merge conflict difficulty

can be collected even before the merge conflict actually occurs. Current awareness tools

are already collecting these information when predicting emerging conflicts. Therefore,

without further overhead, awareness tools can use our model to predict the difficulty of

the emerging conflict, which can be then used as a prioritization criteria when notifying

users. Tools can also recommend developers who are most suited to resolve a conflict

based on the historical data of merge resolutions. The rationale would be that developers

with more experience of resolving difficult conflicts in the past are suitable candidates for

resolving a Severe conflict, as compared to someone who lacks the experience.

5.7 Threats to Validity

Our research findings may be subject to the concerns that we list below. We have

taken all possible steps to neutralize the impacts of these possible threats, but some

couldn’t be mitigated and it’s possible that our mitigation strategies may not have been

effective.

Our samples have been from a single source - Github. This may be a source of

bias, and our findings may be limited to open source programs from Github. However, we

believe that the large number of projects sampled more than adequately addresses this

concern.

Another threat to our findings is that, Git tracks the version history of a project as

it occurred but it also allows history rewriting using the “rebase” command. It is known

that some development teams use “rebase” instead of “merge” to reintegrate branches

[40] which means that may have missed merges in our analysis and the number of merges
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we analyzed is a lower bound as compared to the actual total number of merges in the

projects.

Although we use 24 factors spanning across six categories, there are likely other

features that we did not measure. For example, we suspect that the design patterns of a

program might influence the likelihood of a conflict resolution being difficult. We plan to

expand our metric set to include additional categories in future work.

Our training and testing data had to be manually labeled since this information is

not currently available in CM systems or issue trackers. Therefore, our labels may not

accurately represent the real merging difficulty because of lack of domain expertise. Our

labeling process included inter-rater reliability to prevent individual bias and to reduce

this threat. Additionally, the experience and familiarity with the source code and the

project can make a conflict difficult to resolve for one developer but simple for another.

As we had multiple researchers and we also had a high inter-rater agreement, we assume

this should minimize the aforementioned threat.

Another threat would be that we excluded non-source files from our manual analysis

(e.g. configuration xml file etc.), but changes to non-source files can have impact on the

program’s execution if these files are involved in the build/deploy process or for code

generation and ultimately make the merge resolution difficult.

5.8 Conclusions and Future Work

In this empirical study, the first of its kind, we investigated the different aspects

that can impact the difficulty level of resolving merge conflicts. We evaluated five different

classification techniques from different families and identified “Bagging using RIPPER”

as the base learner to be the best model; with an AUC of 0.76. We also identified a set of

ten metrics that are most influential while predicting the difficulty level of a conflict which
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include metrics about the complexity of the code, the size of the change, and development

pattern etc. We also found that there is a disconnect between the factors developers use

to gauge the difficulty of a conflict and the factors our automatic classification technique

identified as important. Finally, we showed that we are able to perform cross-project

merge conflict difficulty prediction; with median AUC of 0.60. Therefore, our results show

that we can bootstrap prediction in projects with no (labeled) data or only small amount

of history, by training on other projects. Our study opens a new avenue in Software

Engineering research related to predicting the difficulty level of a merge conflict and help

developers plan the merge conflict management process efficiently.

We also provide actionable implications for researchers, tool builders, and practition-

ers to harness the results of our study. In future work, we hope to explore whether these

factors can be seamlessly merged into tools or techniques to assist developers’ workflows.
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6 CONCLUSIONS AND FUTURE WORK

In this thesis we proposed three research goals. The first, was to understand the

connection between software design, bugs and merge conflicts. Our results show a strong

correlation between design smells, bugs and merge conflicts. This indicates that merge

conflicts are a sort of a canary in the mine. If conflicts occur often in a certain part of the

code, perhaps it’s time for the code to be refactored. Not only will this make developers’

lives easier, but it will also improve the quality of the code, and that of the product.

We also proposed a new taxonomy for merge conflicts, based on the root cause of

the conflict. We find that, if the conflict involves changes that alter the behavior of the

code, the lines involved in the conflict are 27 times more likely to be involved in a bug fix

in the future.

Second, we aimed to understand why merge conflicts are difficult for developers Our

qualitative analysis indicates that existing tool support is inadequate for merge conflict

resolution. In many cases, the information required is spread across multiples sources,

and it’s up to the developer to to find it, link it, and make sense of it. This makes merge

conflict resolution a challenging task. We also observed instances where the information

required for the resolution was held by other team members.

Third, we proposed a novel approach to predict the difficulty of a merge conflict

resolution. We find that we can predict the difficulty with good accuracy. This information

can help developers plan ahead for merge conflict resolution. Hopefully, this will make

the resolution less haphazard, and reduce the likely hood of bugs being introduced in the

resolution.

Based on our findings, we propose the following recommendations to 3 key audiences:

• Developers: When encountering merge conflicts that require code changes, we rec-

ommend performing extensive code reviews. Our results show that those areas of
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the code are likely places for bugs to hide in. Those parts of the code are also good

candidates for extensive testing.

• Researchers: The strong relationship between merge conflicts, code smells and bug

fixes suggests that there might be area of improvement for current bug-prediction

tools. In particular, we recommend looking at areas that are frequently involved

in merge conflicts, to determine why we see such high correlations with future bug

fixes.

• Project Managers: We have shown a strong correlation between code smells and

merge conflicts. We therefore recommend that project managers give code smells

more priority when planning out software development, as it can yield benefits a lot

earlier than expected.

For the future, we plan to take some the findings from our field study (detailed

in Chapter 4 to better inform our merge conflict difficulty prediction. In particular, our

findings for the number of information sources, and their packing can be used to improve

the performance of our existing model.

Finally, in the long run, we plan to investigate where exactly existing tools fall short

of developers’ needs. We also plan to bridge those gaps through better tooling. Merge

conflicts will be part of software development for the foreseeable future. However, we can

make developers’ lives easier, if we take the time to understand their needs and workflows,

and continue to build tools that support them.
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